Share to: share facebook share twitter share wa share telegram print page

 

Аксіома нескінченності

Аксіома нескінченності
Досліджується в теорія множин Цермело-Френкеля Редагувати інформацію у Вікіданих
Формула  Редагувати інформацію у Вікіданих
Підтримується Вікіпроєктом Вікіпедія:Проєкт:Математика Редагувати інформацію у Вікіданих

Аксіомою нескінченності (англ. axiom of infinity) називається наступне висловлювання теорії множин:

, де

Аксіома нескінченності проголошує існування (принаймні однієї) нескінченної множини, тобто множини, яка складається з

Для того, щоби пояснити цю аксіому, визначимо елемент B ∪ {B} як наступний елемент B (аксіома пари дозволяє нам сформувати синглетон {B}, а аксіома об'єднання дозволяє провести операцію ∪). Наступний елемент використовується, зокрема, для побудови теорії натуральних чисел за допомогою множин. В такій побудові нулю відповідає порожня множина (0 = {}), одиниця - наступний елемент за 0:

1 = 0 ∪ {0} = {} ∪ {{}} = {{}} = {0}.

Аналогічно, 2 - наступний елемент за 1.

2 = 1 ∪ {1} = {0} ∪ {1} = {{},{{}}} = {0,1}, і т.д.

Тобто, існує така множина a, що включає в себе пусту множину {} та для будь-якого належного їй елемента b включає також і множину, сформовану як об'єднання b та її синґлетону {b}.

В такій побудові кожне натуральне число дорівнює множині всіх попередніх натуральних чисел. Без цієї аксіоми така побудова була б неможливою.

Інші формулювання аксіоми нескінченності

Див. також

Джерела


Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya