Share to: share facebook share twitter share wa share telegram print page

 

Обмежений оператор

Оператор між двома топологічними векторними просторами називається обмеженим, якщо кожну обмежену множину топологічного векторного простору він переводить в обмежену множину топологічного векторного простору . [1]

Дане означення можна застосовувати до лінійних і нелінійних операторів. Будь-який неперервний оператор є обмеженим.

Лінійний обмежений оператор

Для лінійного оператора часто наводять інші означення: [1]

  • Лінійний оператор називається обмеженим, якщо існує такий окіл нуля , що є обмеженою множиною в .
  • Лінійний оператор між нормованими просторами називається обмеженим, якщо існує таке додатне число , що . Найменше з таких чисел позначають через і називають нормою оператора . Іншими словами,

Зв'язок між обмеженістю і неперервністю

Див. також

Примітки

  1. а б в Математическая энциклопедия. — Москва : Сов. энциклопедия, 1977. — Т. 3.
  2. а б Данфорд Н., Шварц Дж. Линейные операторы. — Москва : ИЛ, 1962. — Т. 1. Общая теория. — С. 66-67.
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya