Імовірний інтервалІмові́рний інтерва́л (англ. credible interval) у баєсовій статистиці — це інтервал в області визначення апостерірного розподілу ймовірності або передбачуваного розподілу[en], що застосовується для інтервальної оцінки[en].[1] Його узагальненням для багатовимірних задач є імові́рний регіо́н (англ. credible region). Імовірні інтервали аналогічні довірчим інтервалам у частотній статистиці,[2] хоча вони й різняться філософськими засадами;[3] баєсові інтервали трактують свої межі як фіксовані, а оцінюваний параметр як випадкову змінну, тоді як частотні довірчі інтервали трактують свої межі як випадкові змінні, а параметр — як фіксовану величину. Наприклад, в експерименті, що визначає розподіл невизначеності параметра , якщо ймовірністю того, що лежить між 35 та 45, є 0.95, то є 95-відсотковим імовірним інтервалом. Вибір імовірного інтервалуІмовірні інтервали не є унікальними на апостеріорному розподілі. Методи визначення зручних імовірних інтервалів включають:
Є можливим сформулювати вибір імовірного інтервалу в теорії рішень, і в цьому контексті оптимальний інтервал завжди буде множиною найбільшої густини ймовірності.[4] Відмінності від довірчого інтервалуЧастотний 95-відсотковий довірчий інтервал (англ. confidence interval) означає, що при великій кількості повторюваних проб 95% обчислюваних таким чином довірчих інтервалів включатимуть істинне значення параметра. Ймовірність того, що параметр знаходиться всередині заданого інтервалу (скажімо, 35—45), є або 0, або 1 (не випадковий невідомий параметр є або там, або ні). Із частотної точки зору параметр є фіксованим (не може розглядатися як такий, що має розподіл можливих значень), а довірчий інтервал є випадковим (оскільки він залежить від випадкової вибірки). Антельман (1997, С. 375) резюмує, що [95-відсотковий] довірчий інтервал це «… один інтервал, що згенеровано процедурою, яка даватиме правильні інтервали в 95% випадків».[5] У загальному випадку баєсові ймовірні інтервали не приймають однакового значення з частотними довірчими інтервалами, з двох причин:
У випадку єдиного параметра, та даних, що може бути зведено до єдиної достатньої статистики, може бути показано, що імовірні інтервали та довірчі інтервали дійсно прийматимуть однакове значення, якщо невідомий параметр є коефіцієнтом зсуву (тобто послідовна функція ймовірності має вигляд ) з апріорним, що є рівномірним пласким розподілом;[6] а також якщо невідомий параметр є коефіцієнтом масштабу (тобто послідовна функція ймовірності має вигляд ) з апріорним розподілом Джеффріса[en] [6] — крайнє з тієї причини, що взяття логарифма такого коефіцієнту масштабу перетворює його на коефіцієнт зсуву з рівномірним розподілом. Але ці випадки є виразно особливими (хоча й важливими); в цілому ж встановити таку еквівалентність неможливо. Примітки
|