擬柱體拟柱体(prismatoid)是指所有的顶点都在两个平行平面中的多面体。其側面可能是三角形、梯形或平行四邊形。[1]如果兩個平行面的頂點數相同,且側面為平行四邊形或梯形,則稱為稜錐台[2](prismoid)[3],而此處的稜錐台與錐台並不等價[4]。 一般的柱體、稜台、帳塔、球台等都屬於擬柱體。由於拟柱体必須滿足顶点都在两个平行平面的條件,因此部分的柱狀立體、盾片狀和罩帳皆不屬於拟柱体。 性質其中,h為高,在高度平行於底面的截面積;,高度h,就是頂面;,高度0,就是底面。 其來源為對不超過三次的多項式,以辛普森積分法求定積分之結果。 例子
參考文獻
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve