20世纪70年代场发射电子枪问世后,STEM首次实现了对单个重原子的观测。1973年汉弗莱斯(Humphreys)等人首次提出高角环形暗场探测器的概念,并预测当探测器内角变大时,像衬度从与原子序数Z成正比变成与Z的约2次方成正比。1998年美国橡树岭国家实验室的彭尼库克(S. J. Pennycook)等人首次实现了STEM的HAADF成像,并利用其观测到高温超导体YBa2Cu3O7–x和ErBa2Cu3O7–x的低指数晶带轴的高分辨原子序数衬度像[6],并于1993年将透过环形探测器中间孔的透射束接入EELS探测器,在互不干扰的情况下同时得到了硅和硅化钴外延界面处的0.13 nm分辨率的HAADF像和原子分辨量级的EELS分析[8]。2003年,巴特森(P. E. Batson)通过校正球差使得电子束斑汇聚到0.078 nm(0.78埃米),使得分辨率达到亚埃米级[9][4]。
^Weber Juliane. Fundamental Insights into the Radium Uptake into Barite by Atom Probe Tomography and Electron Microscopy. 2017. ISBN 978-3-95806-220-7(英语).
^ 6.06.1S. J. Pennycook,L. A. Boatner. Chemically sensitive structure-imaging with a scanning transmission electron microscope. Nature. 1988, 366: pages565–567. doi:10.1038/336565a0(英语). 引文格式1维护:冗余文本 (link)
^David B. Williams, C. Barry Carter. Transmission Electron Microscopy: A Textbook for Materials Science. Springer Science. 2009. ISBN 9780387765020(英语).
^N. D. Browning, M. F. Chisholm,S. J. Pennycook. Atomic-resolution chemical analysis using a scanning transmission electron microscope. Nature. 1993, 366: 143–146. doi:10.1038/366143a0(英语).
^P. E. Batson. Experience with the IBM Sub-Angstrom STEM. Microscopy and Microanalysis. 2003, 9 (S02): 136-137. doi:10.1017/S1431927603441196(英语).
^E. Okunishi, I. Ishikawa, H. Sawada; et al. Visualization of Light Elements at Ultrahigh Resolution by STEM Annular Bright Field Microscopy. Microscopy and Microanalysis. 2009, 15 (S02): 164–165. doi:10.1017/S1431927609093891(英语). 引文格式1维护:显式使用等标签 (link)
^S.D. Findlay, N. Shibata, H. Sawada; et al. Dynamics of annular bright field imaging in scanning transmission electron microscopy. Ultramicroscopy. 2010, 110 (7): 903-923. doi:10.1016/j.ultramic.2010.04.004(英语). 引文格式1维护:显式使用等标签 (link)
^P.D. Nellist, S. J. Pennycook, The principles and interpretation of annular dark-field Z-contrast imaging, Advances in Imaging and Electron Physics (Elsevier), 2000: 147–203, ISBN 9780120147557, doi:10.1016/s1076-5670(00)80013-0(英语)
^A. B. Hungría, J. J. Calvino, J. C. Hernández-Garrido. HAADF-STEM Electron Tomography in Catalysis Research. Topics in Catalysis. 2019, 62: 808–821. doi:10.1007/s11244-019-01200-2(英语).
^John Meurig Thomas. Reflections on the value of electron microscopy in the study of heterogeneous catalysts. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2017, 473 (2197): 20160714. PMID 28265196. doi:10.1098/rspa.2016.0714(英语).
^Thomas E. Davies, He Li, Stéphanie Bessette; et al. Experimental methods in chemical engineering: Scanning electron microscopy and X-ray ultra-microscopy—SEM and XuM. The Canadian Journal of Chemical Engineering. 2022, 100 (11): 3145-3159. doi:10.1002/cjce.24405(英语). 引文格式1维护:显式使用等标签 (link)