Share to: share facebook share twitter share wa share telegram print page

Cantic octagonal tiling

Cantic octagonal tiling
Cantic octagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 3.6.4.6
Schläfli symbol h2{8,3}
Wythoff symbol 4 3 | 3
Coxeter diagram =
Symmetry group [(4,3,3)], (*433)
Dual Order-4-3-3 t12 dual tiling
Properties Vertex-transitive

In geometry, the tritetratrigonal tiling or shieldotritetragonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t1,2(4,3,3). It can also be named as a cantic octagonal tiling, h2{8,3}.

Dual tiling

Uniform (4,3,3) tilings
Symmetry: [(4,3,3)], (*433) [(4,3,3)]+, (433)
h{8,3}
t0(4,3,3)
r{3,8}1/2
t0,1(4,3,3)
h{8,3}
t1(4,3,3)
h2{8,3}
t1,2(4,3,3)
{3,8}1/2
t2(4,3,3)
h2{8,3}
t0,2(4,3,3)
t{3,8}1/2
t0,1,2(4,3,3)
s{3,8}1/2
s(4,3,3)
Uniform duals
V(3.4)3 V3.8.3.8 V(3.4)3 V3.6.4.6 V(3.3)4 V3.6.4.6 V6.6.8 V3.3.3.3.3.4
*n33 orbifold symmetries of cantic tilings: 3.6.n.6
Symmetry
*n32
[1+,2n,3]
= [(n,3,3)]
Spherical Euclidean Compact Hyperbolic Paracompact
*233
[1+,4,3]
= [3,3]
*333
[1+,6,3]
= [(3,3,3)]
*433
[1+,8,3]
= [(4,3,3)]
*533
[1+,10,3]
= [(5,3,3)]
*633...
[1+,12,3]
= [(6,3,3)]
*∞33
[1+,∞,3]
= [(∞,3,3)]
Coxeter
Schläfli
=
h2{4,3}
=
h2{6,3}
=
h2{8,3}
=
h2{10,3}
=
h2{12,3}
=
h2{∞,3}
Cantic
figure
Vertex 3.6.2.6 3.6.3.6 3.6.4.6 3.6.5.6 3.6.6.6 3.6..6

Domain
Wythoff 2 3 | 3 3 3 | 3 4 3 | 3 5 3 | 3 6 3 | 3 ∞ 3 | 3
Dual
figure
Face V3.6.2.6 V3.6.3.6 V3.6.4.6 V3.6.5.6 V3.6.6.6 V3.6.∞.6

See also

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.


Kembali kehalaman sebelumnya