"Operator angle" redirects here. For other uses, see Camera angle.
If T is a contraction acting on a Hilbert space, the following basic objects associated with T can be defined.
The defect operators of T are the operators DT = (1 − T*T)½ and DT* = (1 − TT*)½. The square root is the positive semidefinite one given by the spectral theorem. The defect spaces and are the closure of the ranges Ran(DT) and Ran(DT*) respectively. The positive operator DT induces an inner product on . The inner product space can be identified naturally with Ran(DT). A similar statement holds for .
The defect indices of T are the pair
The defect operators and the defect indices are a measure of the non-unitarity of T.
A contraction T on a Hilbert space can be canonically decomposed into an orthogonal direct sum
where U is a unitary operator and Γ is completely non-unitary in the sense that it has no non-zero reducing subspaces on which its restriction is unitary. If U = 0, T is said to be a completely non-unitary contraction. A special case of this decomposition is the Wold decomposition for an isometry, where Γ is a proper isometry.
Contractions on Hilbert spaces can be viewed as the operator analogs of cos θ and are called operator angles in some contexts. The explicit description of contractions leads to (operator-)parametrizations of positive and unitary matrices.
Dilation theorem for contractions
Sz.-Nagy's dilation theorem, proved in 1953, states that for any contraction T on a Hilbert space H, there is a unitary operatorU on a larger Hilbert space K ⊇ H such that if P is the orthogonal projection of K onto H then Tn = PUnP for all n > 0. The operator U is called a dilation of T and is uniquely determined if U is minimal, i.e. K is the smallest closed subspace invariant under U and U* containing H.
the orthogonal direct sum of countably many copies of H.
Let V be the isometry on defined by
Let
Define a unitary W on by
W is then a unitary dilation of T with H considered as the first component of .
The minimal dilation U is obtained by taking the restriction of W to the closed subspace generated by powers of W applied to H.
Dilation theorem for contraction semigroups
There is an alternative proof of Sz.-Nagy's dilation theorem, which allows significant generalization.[2]
Let G be a group, U(g) a unitary representation of G on a Hilbert space K and P an orthogonal projection onto a closed subspace H = PK of K.
The operator-valued function
with values in operators on K satisfies the positive-definiteness condition
where
Moreover,
Conversely, every operator-valued positive-definite function arises in this way. Recall that every (continuous) scalar-valued positive-definite function on a topological group induces an inner product and group representation φ(g) = 〈Ug v, v〉 where Ug is a (strongly continuous) unitary representation (see Bochner's theorem). Replacing v, a rank-1 projection, by a general projection gives the operator-valued statement. In fact the construction is identical; this is sketched below.
Let be the space of functions on G of finite support with values in H with inner product
G acts unitarily on by
Moreover, H can be identified with a closed subspace of using the isometric embedding
sending v in H to fv with
If P is the projection of onto H, then
using the above identification.
When G is a separable topological group, Φ is continuous in the strong (or weak) operator topology if and only if U is.
In this case functions supported on a countable dense subgroup of G are dense in , so that is separable.
When G = Z any contraction operator T defines such a function Φ through
for n > 0. The above construction then yields a minimal unitary dilation.
The same method can be applied to prove a second dilation theorem of Sz._Nagy for a one-parameter strongly continuous contraction semigroup T(t) (t ≥ 0) on a Hilbert space H. Cooper (1947) had previously proved the result for one-parameter semigroups of isometries,[3]
The theorem states that there is a larger Hilbert space K containing H and a unitary representation U(t) of R such that
and the translates U(t)H generate K.
In fact T(t) defines a continuous operator-valued positove-definite function Φ on R through
for t > 0. Φ is positive-definite on cyclic subgroups of R, by the argument for Z, and hence on R itself by continuity.
The previous construction yields a minimal unitary representation U(t) and projection P.
where the domain on A consists of all ξ for which this limit exists.
A is called the generator of the semigroup and satisfies
on its domain. When A is a self-adjoint operator
in the sense of the spectral theorem and this notation is used more generally in semigroup theory.
The cogenerator of the semigroup is the contraction defined by
A can be recovered from T using the formula
In particular a dilation of T on K ⊃ H immediately gives a dilation of the semigroup.[4]
Functional calculus
Let T be totally non-unitary contraction on H. Then the minimal unitary dilation U of T on K ⊃ H is unitarily equivalent to a direct sum of copies the bilateral shift operator, i.e. multiplication by z on L2(S1).[5]
If P is the orthogonal projection onto H then for f in L∞ = L∞(S1) it follows that the operator f(T) can be defined
by
Let H∞ be the space of bounded holomorphic functions on the unit disk D. Any such function has boundary values in L∞ and is uniquely determined by these, so that there is an embedding H∞ ⊂ L∞.
For f in H∞, f(T) can be defined
without reference to the unitary dilation.
In fact if
for |z| < 1, then for r < 1
is holomorphic on |z| < 1/r.
In that case fr(T) is defined by the holomorphic functional calculus and f (T ) can be defined by
The map sending f to f(T) defines an algebra homomorphism of H∞ into bounded operators on H. Moreover, if
then
This map has the following continuity property: if a uniformly bounded sequence fn tends almost everywhere to f, then fn(T) tends to f(T) in the strong operator topology.
For t ≥ 0, let et be the inner function
If T is the cogenerator of a one-parameter semigroup of completely non-unitary contractions T(t), then
and
C0 contractions
A completely non-unitary contraction T is said to belong to the class C0 if and only if f(T) = 0 for some non-zero
f in H∞. In this case the set of such f forms an ideal in H∞. It has the form φ ⋅ H∞ where g
is an inner function, i.e. such that |φ| = 1 on S1: φ is uniquely determined up to multiplication by a complex number of modulus 1 and is called the minimal function of T. It has properties analogous to the minimal polynomial of a matrix.
The minimal function φ admits a canonical factorization
for some non-negative finite measure μ on the circle: in this case, if non-zero, μ must be singular with respect to Lebesgue measure. In the above decomposition of φ, either of the two factors can be absent.
The minimal function φ determines the spectrum of T. Within the unit disk, the spectral values are the zeros of φ. There are at most countably many such λi, all eigenvalues of T, the zeros of B(z). A point of the unit circle does not lie in the spectrum of T if and only if φ has a holomorphic continuation to a neighborhood of that point.
φ reduces to a Blaschke product exactly when H equals the closure of the direct sum (not necessarily orthogonal) of the generalized eigenspaces[6]
Quasi-similarity
Two contractions T1 and T2 are said to be quasi-similar when there are bounded operators A, B with trivial kernel and dense range such that
The following properties of a contraction T are preserved under quasi-similarity:
being unitary
being completely non-unitary
being in the class C0
being multiplicity free, i.e. having a commutative commutant
Two quasi-similar C0 contractions have the same minimal function and hence the same spectrum.
The classification theorem for C0 contractions states that two multiplicity free C0 contractions are quasi-similar if and only if they have the same minimal function (up to a scalar multiple).[7]
A model for multiplicity free C0 contractions with minimal function φ is given by taking
where H2 is the Hardy space of the circle and letting T be multiplication by z.[8]
Such operators are called Jordan blocks and denoted S(φ).
As a generalization of Beurling's theorem, the commutant of such an operator consists exactly of operators ψ(T) with ψ in H≈, i.e. multiplication operators on H2 corresponding to functions in H≈.
A C0 contraction operator T is multiplicity free if and only if it is quasi-similar to a Jordan block (necessarily corresponding the one corresponding to its minimal function).
Examples.
If a contraction T if quasi-similar to an operator S with
with the λi's distinct, of modulus less than 1, such that
and (ei) is an orthonormal basis, then S, and hence T, is C0 and multiplicity free. Hence H is the closure of direct sum of the λi-eigenspaces of T, each having multiplicity one. This can also be seen directly using the definition of quasi-similarity.
The results above can be applied equally well to one-parameter semigroups, since, from the functional calculus, two semigroups are quasi-similar if and only if their cogenerators are quasi-similar.[9]
Classification theorem for C0 contractions:Every C0 contraction is canonically quasi-similar to a direct sum of Jordan blocks.
In fact every C0 contraction is quasi-similar to a unique operator of the form
where the φn are uniquely determined inner functions, with φ1 the minimal function of S and hence T.[10]
Bercovici, H. (1988), Operator theory and arithmetic in H∞, Mathematical Surveys and Monographs, vol. 26, American Mathematical Society, ISBN0-8218-1528-8
Gamelin, T. W. (1969), Uniform algebras, Prentice-Hall
Hoffman, K. (1962), Banach spaces of analytic functions, Prentice-Hall
Sz.-Nagy, B.; Foias, C.; Bercovici, H.; Kérchy, L. (2010), Harmonic analysis of operators on Hilbert space, Universitext (Second ed.), Springer, ISBN978-1-4419-6093-1
Riesz, F.; Sz.-Nagy, B. (1995), Functional analysis. Reprint of the 1955 original, Dover Books on Advanced Mathematics, Dover, pp. 466–472, ISBN0-486-66289-6
DeKalb County, IllinoisLokasi di negara bagian IllinoisLokasi negara bagian Illinois di Amerika SerikatDidirikan1836SeatSycamoreWilayah • Keseluruhan634 sq mi (1.642 km2) • Perairan1 sq mi (3 km2), 0.13%Populasi • (2000)88.969 • Kepadatan140/sq mi (54/km²)Situs webwww.dekalbcounty.org DeKalb County adalah county yang terletak di negara bagian Illinois, Amerika Serikat. County ini berpenduduk 88.969 jiwa pada tahu…
باتل أوف ذا نورث 2022 تفاصيل السباقسلسلة1. Tour of Scandinaviaمنافسةطواف العالم للدراجات للسيدات 2022 2.WWTمراحل6التواريخ09 – 14 أغسطس 2022المسافات818٫3 كمالبلدان النرويج السويد الدنماركنقطة البدايةكوبنهاغننقطة النهايةهالدنالفرق20عدد المتسابقين في البداية118عدد المتسابقين في النهاية94مت…
الخطوط الجوية الأفغانيةAriana Afghan Airlines إياتاFG إيكاوAFG رمز النداءARIANA تاريخ الإنشاء 27 يناير 1955 الجنسية أفغانستان المطارات الرئيسية مطار كابل الدولي المطارات الثانوية مطار قندهار الدولي برنامج المسافر الدائم مايلز أريانا حجم الأسطول 8 الوجهات 17 المؤسس حكومة إمارة أف…
Cycling race Men's road race at the 2015 European GamesVenueBaku (215.8 km)Date21 JuneCompetitors124 from 38 nationsWinning time5h 27' 25Medalists Luis León Sánchez Spain Andriy Hrivko Ukraine Petr Vakoč Czech Republic2019 → Cycling at the2015 European GamesRoad cyclingRoad racemenwomenTime trialmenwomenMountain bikingCross countrymenwomenBMXBMXmenwomenvte The men's road race cycling event at the 2015 Euro…
New Zealand new wave band Split EnzSplit Enz at Rod Laver Arena, June 2006Background informationOriginAuckland, New ZealandGenresProgressive rock (early)new waveart rockpop rockpost-punk[1]Years active1972–1984, 1986, 1992-1993, 1999, 2002, 2005-2006, 2008-2009LabelsMushroom, Chrysalis, A&MSpinoffsForenzicsCrowded HouseFinn BrothersSchnell FensterThe MakersEnzsoCitizen BandThe SwingersPast membersSee MembersWebsitefrenz.com Split Enz at the Nambassa festival, New Zealand, January 1…
Cet article possède un paronyme, voir Waterloo (homonymie). Wattrelos L'église Saint-Maclou. Blason Administration Pays France Région Hauts-de-France Département Nord Arrondissement Lille Intercommunalité Métropole européenne de Lille Maire Mandat Dominique Baert (LREM) 2020-2026 Code postal 59150 Code commune 59650 Démographie Gentilé Wattrelosiens Populationmunicipale 40 836 hab. (2021 ) Densité 2 998 hab./km2 Population agglomération 1 058 439 hab…
Difference between a variable's observed value and a reference valueThis article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Deviation statistics – news · newspapers · books · scholar · JSTOR (November 2022) (Learn how and when to remove this template message)Not to be confused with Deviance (statistics) or Deviate…
Pour les articles homonymes, voir Villalonga (homonymie). José Luis de VilallongaTitre de noblesseMargraveBiographieNaissance 29 janvier 1920MadridDécès 30 août 2007 (à 87 ans)AndratxSépulture Cimetière du PoblenouNom de naissance José Luis de Vilallonga Cabeza de VacaNationalité espagnoleActivités Écrivain, acteur, journaliste, requetéPériode d'activité 1958-1998Père Salvador de Vilallonga i de Càrcer (d)Conjoints Priscilla Scott Ellis (en) (à partir de 1945)Begoña Arangu…
Aimee Garcia a Parigi nel 2022 Aimee Garcia (Chicago, 28 novembre 1978) è un'attrice statunitense. È conosciuta principalmente per i ruoli di Veronica Palmero nella sitcom George Lopez, di Jamie Batista nella serie televisiva Dexter e di Ella Lopez in Lucifer. È inoltre stata tra i personaggi principali delle serie di breve durata Trauma e Off the Map. Indice 1 Carriera 2 Filmografia 2.1 Cinema 2.2 Televisione 2.3 Doppiatrice 3 Doppiatrici italiane 4 Note 5 Altri progetti 6 Collegamenti ester…
Kata NetizenGenreGelar wicaraPresenterRiko AnggaraEdika IpelonaNegara asalIndonesiaProduksiDurasi60 menit (Setiap Kamis)Rumah produksiKompas Gramedia ProductionRilis asliJaringanKompas TVFormat gambar720p (HDTV)Format audioStereoRilis10 Agustus 2017 — 6 Agustus 2020Acara terkaitSosmed Kata Netizen adalah acara gelar wicara yang tayang di Kompas TV dimana acara ini berfokus membahas isu-isu terkini yang ramai diperbincangkan di media sosial.[1] Acara ini tayang sejak 10 Agustus 2017[…
Berkelium(IV) oxide Names Other names Berkelium dioxide Identifiers 3D model (JSmol) Interactive image SMILES [O-2].[O-2].[Bk+4] Properties Chemical formula BkO2 Molar mass 278.9988 g/mol Appearance Brown solid Structure[1] Crystal structure cubic Space group Fm3m Lattice constant a = 533.2 pm, b = 533.2 pm, c = 533.2 pm Related compounds Other anions Berkelium(IV) sulfide Other cations Americium(IV) oxideCurium(IV) oxideCalifornium(IV) ox…
گ خط مفرد گ مركب گ گ گ كتابة عربية الگاف أو الكاف المجهورة[1] أو الكاف غير الصريحة أو المعقودة أو العجمية أو الفارسية أو المعلمة[2] أو المشروطة، من حروف الأبجدية الفارسية العربية (والكردية والأردية وغيرها) تنطق جيمًا غير المعطشة (الجيم المصرية)، ولا مقابل لها في ا…
Vladimir Putin, Presiden Rusia, bertemu dengan atlet Rusia, 31 Januari 2018 Logo OAR yang disetujui Atlet Olimpiade dari Rusia atau Olympic Athlete from Russia (OAR), adalah penunjukan atlet Rusia yang terpilih dan diizinkan untuk berpartisipasi dalam Olimpiade Musim Dingin 2018 di Pyeongchang, Korea Selatan oleh Komite Olimpiade Internasional (IOC). Penunjukan tersebut dilakukan setelah Komite Olimpiade Rusia ditangguhkan karena masalah skandal doping Rusia. Ini adalah kedua kalinya atlet Rusia…
National park in Ukraine Pryazovskyi National Nature ParkUkrainian: Приазовський національний природний паркIUCN category II (national park)Berda River floodplain, Pryazovskyi National ParkLocation of ParkLocationZaporizhzhia OblastNearest cityBerdianskCoordinates46°50′25″N 35°21′32″E / 46.84028°N 35.35889°E / 46.84028; 35.35889Area78,126.92 hectares (193,056 acres; 781 km2; 302 sq mi)Established2010…
Sant'Enrico Morse Gesuita e martire NascitaBrome, 1595 MorteTyburn, 1º febbraio 1645 Venerato daChiesa cattolica Beatificazione15 dicembre 1929 da papa Pio XI Canonizzazione25 ottobre 1970 da papa Paolo VI Ricorrenza1º febbraio Manuale Enrico Morse, in inglese Henry Morse (Brome, 1595 – Tyburn, 1º febbraio 1645), è stato un presbitero inglese; martirizzato sotto Carlo I, è venerato come santo dalla Chiesa cattolica e ricordato come uno dei santi quaranta martiri di Inghilterra …
George Hermon GillBorn(1895-03-08)8 March 1895Fulham, London, EnglandDied27 February 1973(1973-02-27) (aged 77)East Melbourne, Victoria, AustraliaAllegianceUnited KingdomAustraliaService/branchRoyal Australian NavyYears of service1927–1953RankCommanderBattles/warsFirst World WarSecond World WarAwardsMember of the Order of the British EmpireRelationsEsther Paterson (wife) Commander George Hermon Gill, MBE, VD (8 March 1895 – 27 February 1973) was a Royal Australian Navy offi…
بيتوسكي الإحداثيات 45°22′24″N 84°57′19″W / 45.373333333333°N 84.955277777778°W / 45.373333333333; -84.955277777778 [1] تقسيم إداري البلد الولايات المتحدة[2][3] التقسيم الأعلى مقاطعة إيميت عاصمة لـ مقاطعة إيميت خصائص جغرافية المساحة 13.7653 كيلومتر مربع13.699841 كيلو…