Share to: share facebook share twitter share wa share telegram print page

Contraction (operator theory)

In operator theory, a bounded operator T: XY between normed vector spaces X and Y is said to be a contraction if its operator norm ||T || ≤ 1. This notion is a special case of the concept of a contraction mapping, but every bounded operator becomes a contraction after suitable scaling. The analysis of contractions provides insight into the structure of operators, or a family of operators. The theory of contractions on Hilbert space is largely due to Béla Szőkefalvi-Nagy and Ciprian Foias.

Contractions on a Hilbert space

If T is a contraction acting on a Hilbert space , the following basic objects associated with T can be defined.

The defect operators of T are the operators DT = (1 − T*T)½ and DT* = (1 − TT*)½. The square root is the positive semidefinite one given by the spectral theorem. The defect spaces and are the closure of the ranges Ran(DT) and Ran(DT*) respectively. The positive operator DT induces an inner product on . The inner product space can be identified naturally with Ran(DT). A similar statement holds for .

The defect indices of T are the pair

The defect operators and the defect indices are a measure of the non-unitarity of T.

A contraction T on a Hilbert space can be canonically decomposed into an orthogonal direct sum

where U is a unitary operator and Γ is completely non-unitary in the sense that it has no non-zero reducing subspaces on which its restriction is unitary. If U = 0, T is said to be a completely non-unitary contraction. A special case of this decomposition is the Wold decomposition for an isometry, where Γ is a proper isometry.

Contractions on Hilbert spaces can be viewed as the operator analogs of cos θ and are called operator angles in some contexts. The explicit description of contractions leads to (operator-)parametrizations of positive and unitary matrices.

Dilation theorem for contractions

Sz.-Nagy's dilation theorem, proved in 1953, states that for any contraction T on a Hilbert space H, there is a unitary operator U on a larger Hilbert space KH such that if P is the orthogonal projection of K onto H then Tn = P Un P for all n > 0. The operator U is called a dilation of T and is uniquely determined if U is minimal, i.e. K is the smallest closed subspace invariant under U and U* containing H.

In fact define[1]

the orthogonal direct sum of countably many copies of H.

Let V be the isometry on defined by

Let

Define a unitary W on by

W is then a unitary dilation of T with H considered as the first component of .

The minimal dilation U is obtained by taking the restriction of W to the closed subspace generated by powers of W applied to H.

Dilation theorem for contraction semigroups

There is an alternative proof of Sz.-Nagy's dilation theorem, which allows significant generalization.[2]

Let G be a group, U(g) a unitary representation of G on a Hilbert space K and P an orthogonal projection onto a closed subspace H = PK of K.

The operator-valued function

with values in operators on K satisfies the positive-definiteness condition

where

Moreover,

Conversely, every operator-valued positive-definite function arises in this way. Recall that every (continuous) scalar-valued positive-definite function on a topological group induces an inner product and group representation φ(g) = 〈Ug v, v〉 where Ug is a (strongly continuous) unitary representation (see Bochner's theorem). Replacing v, a rank-1 projection, by a general projection gives the operator-valued statement. In fact the construction is identical; this is sketched below.

Let be the space of functions on G of finite support with values in H with inner product

G acts unitarily on by

Moreover, H can be identified with a closed subspace of using the isometric embedding sending v in H to fv with

If P is the projection of onto H, then

using the above identification.

When G is a separable topological group, Φ is continuous in the strong (or weak) operator topology if and only if U is.

In this case functions supported on a countable dense subgroup of G are dense in , so that is separable.

When G = Z any contraction operator T defines such a function Φ through

for n > 0. The above construction then yields a minimal unitary dilation.

The same method can be applied to prove a second dilation theorem of Sz._Nagy for a one-parameter strongly continuous contraction semigroup T(t) (t ≥ 0) on a Hilbert space H. Cooper (1947) had previously proved the result for one-parameter semigroups of isometries,[3]

The theorem states that there is a larger Hilbert space K containing H and a unitary representation U(t) of R such that

and the translates U(t)H generate K.

In fact T(t) defines a continuous operator-valued positove-definite function Φ on R through

for t > 0. Φ is positive-definite on cyclic subgroups of R, by the argument for Z, and hence on R itself by continuity.

The previous construction yields a minimal unitary representation U(t) and projection P.

The Hille–Yosida theorem assigns a closed unbounded operator A to every contractive one-parameter semigroup T'(t) through

where the domain on A consists of all ξ for which this limit exists.

A is called the generator of the semigroup and satisfies

on its domain. When A is a self-adjoint operator

in the sense of the spectral theorem and this notation is used more generally in semigroup theory.

The cogenerator of the semigroup is the contraction defined by

A can be recovered from T using the formula

In particular a dilation of T on KH immediately gives a dilation of the semigroup.[4]

Functional calculus

Let T be totally non-unitary contraction on H. Then the minimal unitary dilation U of T on KH is unitarily equivalent to a direct sum of copies the bilateral shift operator, i.e. multiplication by z on L2(S1).[5]

If P is the orthogonal projection onto H then for f in L = L(S1) it follows that the operator f(T) can be defined by

Let H be the space of bounded holomorphic functions on the unit disk D. Any such function has boundary values in L and is uniquely determined by these, so that there is an embedding H ⊂ L.

For f in H, f(T) can be defined without reference to the unitary dilation.

In fact if

for |z| < 1, then for r < 1

is holomorphic on |z| < 1/r.

In that case fr(T) is defined by the holomorphic functional calculus and f (T ) can be defined by

The map sending f to f(T) defines an algebra homomorphism of H into bounded operators on H. Moreover, if

then

This map has the following continuity property: if a uniformly bounded sequence fn tends almost everywhere to f, then fn(T) tends to f(T) in the strong operator topology.

For t ≥ 0, let et be the inner function

If T is the cogenerator of a one-parameter semigroup of completely non-unitary contractions T(t), then

and

C0 contractions

A completely non-unitary contraction T is said to belong to the class C0 if and only if f(T) = 0 for some non-zero f in H. In this case the set of such f forms an ideal in H. It has the form φ ⋅ H where g is an inner function, i.e. such that |φ| = 1 on S1: φ is uniquely determined up to multiplication by a complex number of modulus 1 and is called the minimal function of T. It has properties analogous to the minimal polynomial of a matrix.

The minimal function φ admits a canonical factorization

where |c|=1, B(z) is a Blaschke product

with

and P(z) is holomorphic with non-negative real part in D. By the Herglotz representation theorem,

for some non-negative finite measure μ on the circle: in this case, if non-zero, μ must be singular with respect to Lebesgue measure. In the above decomposition of φ, either of the two factors can be absent.

The minimal function φ determines the spectrum of T. Within the unit disk, the spectral values are the zeros of φ. There are at most countably many such λi, all eigenvalues of T, the zeros of B(z). A point of the unit circle does not lie in the spectrum of T if and only if φ has a holomorphic continuation to a neighborhood of that point.

φ reduces to a Blaschke product exactly when H equals the closure of the direct sum (not necessarily orthogonal) of the generalized eigenspaces[6]

Quasi-similarity

Two contractions T1 and T2 are said to be quasi-similar when there are bounded operators A, B with trivial kernel and dense range such that

The following properties of a contraction T are preserved under quasi-similarity:

  • being unitary
  • being completely non-unitary
  • being in the class C0
  • being multiplicity free, i.e. having a commutative commutant

Two quasi-similar C0 contractions have the same minimal function and hence the same spectrum.

The classification theorem for C0 contractions states that two multiplicity free C0 contractions are quasi-similar if and only if they have the same minimal function (up to a scalar multiple).[7]

A model for multiplicity free C0 contractions with minimal function φ is given by taking

where H2 is the Hardy space of the circle and letting T be multiplication by z.[8]

Such operators are called Jordan blocks and denoted S(φ).

As a generalization of Beurling's theorem, the commutant of such an operator consists exactly of operators ψ(T) with ψ in H, i.e. multiplication operators on H2 corresponding to functions in H.

A C0 contraction operator T is multiplicity free if and only if it is quasi-similar to a Jordan block (necessarily corresponding the one corresponding to its minimal function).

Examples.

  • If a contraction T if quasi-similar to an operator S with

with the λi's distinct, of modulus less than 1, such that

and (ei) is an orthonormal basis, then S, and hence T, is C0 and multiplicity free. Hence H is the closure of direct sum of the λi-eigenspaces of T, each having multiplicity one. This can also be seen directly using the definition of quasi-similarity.

  • The results above can be applied equally well to one-parameter semigroups, since, from the functional calculus, two semigroups are quasi-similar if and only if their cogenerators are quasi-similar.[9]

Classification theorem for C0 contractions: Every C0 contraction is canonically quasi-similar to a direct sum of Jordan blocks.

In fact every C0 contraction is quasi-similar to a unique operator of the form

where the φn are uniquely determined inner functions, with φ1 the minimal function of S and hence T.[10]

See also

Notes

  1. ^ Sz.-Nagy et al. 2010, pp. 10–14
  2. ^ Sz.-Nagy et al. 2010, pp. 24–28
  3. ^ Sz.-Nagy et al. 2010, pp. 28–30
  4. ^ Sz.-Nagy et al. 2010, pp. 143, 147
  5. ^ Sz.-Nagy et al. 2010, pp. 87–88
  6. ^ Sz.-Nagy et al. 2010, p. 138
  7. ^ Sz.-Nagy et al. 2010, pp. 395–440
  8. ^ Sz.-Nagy et al. 2010, p. 126
  9. ^ Bercovici 1988, p. 95
  10. ^ Bercovici 1988, pp. 35–66

References

  • Bercovici, H. (1988), Operator theory and arithmetic in H, Mathematical Surveys and Monographs, vol. 26, American Mathematical Society, ISBN 0-8218-1528-8
  • Cooper, J. L. B. (1947), "One-parameter semigroups of isometric operators in Hilbert space", Ann. of Math., 48 (4): 827–842, doi:10.2307/1969382, JSTOR 1969382
  • Gamelin, T. W. (1969), Uniform algebras, Prentice-Hall
  • Hoffman, K. (1962), Banach spaces of analytic functions, Prentice-Hall
  • Sz.-Nagy, B.; Foias, C.; Bercovici, H.; Kérchy, L. (2010), Harmonic analysis of operators on Hilbert space, Universitext (Second ed.), Springer, ISBN 978-1-4419-6093-1
  • Riesz, F.; Sz.-Nagy, B. (1995), Functional analysis. Reprint of the 1955 original, Dover Books on Advanced Mathematics, Dover, pp. 466–472, ISBN 0-486-66289-6

Read other articles:

DeKalb County, IllinoisLokasi di negara bagian IllinoisLokasi negara bagian Illinois di Amerika SerikatDidirikan1836SeatSycamoreWilayah • Keseluruhan634 sq mi (1.642 km2) • Perairan1 sq mi (3 km2), 0.13%Populasi • (2000)88.969 • Kepadatan140/sq mi (54/km²)Situs webwww.dekalbcounty.org DeKalb County adalah county yang terletak di negara bagian Illinois, Amerika Serikat. County ini berpenduduk 88.969 jiwa pada tahu…

باتل أوف ذا نورث 2022 تفاصيل السباقسلسلة1. Tour of Scandinaviaمنافسةطواف العالم للدراجات للسيدات 2022 2.WWT‏مراحل6التواريخ09 – 14 أغسطس 2022المسافات818٫3 كمالبلدان النرويج السويد الدنماركنقطة البدايةكوبنهاغننقطة النهايةهالدنالفرق20عدد المتسابقين في البداية118عدد المتسابقين في النهاية94مت…

الخطوط الجوية الأفغانيةAriana Afghan Airlines     إياتاFG إيكاوAFG رمز النداءARIANA تاريخ الإنشاء 27 يناير 1955 الجنسية أفغانستان  المطارات الرئيسية مطار كابل الدولي المطارات الثانوية مطار قندهار الدولي برنامج المسافر الدائم مايلز أريانا حجم الأسطول 8 الوجهات 17 المؤسس حكومة إمارة أف…

Cycling race Men's road race at the 2015 European GamesVenueBaku (215.8 km)Date21 JuneCompetitors124 from 38 nationsWinning time5h 27' 25Medalists  Luis León Sánchez   Spain Andriy Hrivko   Ukraine Petr Vakoč   Czech Republic2019 → Cycling at the2015 European GamesRoad cyclingRoad racemenwomenTime trialmenwomenMountain bikingCross countrymenwomenBMXBMXmenwomenvte The men's road race cycling event at the 2015 Euro…

New Zealand new wave band Split EnzSplit Enz at Rod Laver Arena, June 2006Background informationOriginAuckland, New ZealandGenresProgressive rock (early)new waveart rockpop rockpost-punk[1]Years active1972–1984, 1986, 1992-1993, 1999, 2002, 2005-2006, 2008-2009LabelsMushroom, Chrysalis, A&MSpinoffsForenzicsCrowded HouseFinn BrothersSchnell FensterThe MakersEnzsoCitizen BandThe SwingersPast membersSee MembersWebsitefrenz.com Split Enz at the Nambassa festival, New Zealand, January 1…

Cet article possède un paronyme, voir Waterloo (homonymie). Wattrelos L'église Saint-Maclou. Blason Administration Pays France Région Hauts-de-France Département Nord Arrondissement Lille Intercommunalité Métropole européenne de Lille Maire Mandat Dominique Baert (LREM) 2020-2026 Code postal 59150 Code commune 59650 Démographie Gentilé Wattrelosiens Populationmunicipale 40 836 hab. (2021 ) Densité 2 998 hab./km2 Population agglomération 1 058 439 hab…

Difference between a variable's observed value and a reference valueThis article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Deviation statistics – news · newspapers · books · scholar · JSTOR (November 2022) (Learn how and when to remove this template message)Not to be confused with Deviance (statistics) or Deviate…

Pour les articles homonymes, voir Villalonga (homonymie). José Luis de VilallongaTitre de noblesseMargraveBiographieNaissance 29 janvier 1920MadridDécès 30 août 2007 (à 87 ans)AndratxSépulture Cimetière du PoblenouNom de naissance José Luis de Vilallonga Cabeza de VacaNationalité espagnoleActivités Écrivain, acteur, journaliste, requetéPériode d'activité 1958-1998Père Salvador de Vilallonga i de Càrcer (d)Conjoints Priscilla Scott Ellis (en) (à partir de 1945)Begoña Arangu…

Aimee Garcia a Parigi nel 2022 Aimee Garcia (Chicago, 28 novembre 1978) è un'attrice statunitense. È conosciuta principalmente per i ruoli di Veronica Palmero nella sitcom George Lopez, di Jamie Batista nella serie televisiva Dexter e di Ella Lopez in Lucifer. È inoltre stata tra i personaggi principali delle serie di breve durata Trauma e Off the Map. Indice 1 Carriera 2 Filmografia 2.1 Cinema 2.2 Televisione 2.3 Doppiatrice 3 Doppiatrici italiane 4 Note 5 Altri progetti 6 Collegamenti ester…

Kata NetizenGenreGelar wicaraPresenterRiko AnggaraEdika IpelonaNegara asalIndonesiaProduksiDurasi60 menit (Setiap Kamis)Rumah produksiKompas Gramedia ProductionRilis asliJaringanKompas TVFormat gambar720p (HDTV)Format audioStereoRilis10 Agustus 2017 — 6 Agustus 2020Acara terkaitSosmed Kata Netizen adalah acara gelar wicara yang tayang di Kompas TV dimana acara ini berfokus membahas isu-isu terkini yang ramai diperbincangkan di media sosial.[1] Acara ini tayang sejak 10 Agustus 2017[…

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「弐」…

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)[2…

Berkelium(IV) oxide Names Other names Berkelium dioxide Identifiers 3D model (JSmol) Interactive image SMILES [O-2].[O-2].[Bk+4] Properties Chemical formula BkO2 Molar mass 278.9988 g/mol Appearance Brown solid Structure[1] Crystal structure cubic Space group Fm3m Lattice constant a = 533.2 pm, b = 533.2 pm, c = 533.2 pm Related compounds Other anions Berkelium(IV) sulfide Other cations Americium(IV) oxideCurium(IV) oxideCalifornium(IV) ox…

گ

گ خط مفرد گ مركب گ‍ ‍گ‍ ‍گ كتابة عربية الگاف أو الكاف المجهورة[1] أو الكاف غير الصريحة أو المعقودة أو العجمية أو الفارسية أو المعلمة[2] أو المشروطة، من حروف الأبجدية الفارسية العربية (والكردية والأردية وغيرها) تنطق جيمًا غير المعطشة (الجيم المصرية)، ولا مقابل لها في ا…

Vladimir Putin, Presiden Rusia, bertemu dengan atlet Rusia, 31 Januari 2018 Logo OAR yang disetujui Atlet Olimpiade dari Rusia atau Olympic Athlete from Russia (OAR), adalah penunjukan atlet Rusia yang terpilih dan diizinkan untuk berpartisipasi dalam Olimpiade Musim Dingin 2018 di Pyeongchang, Korea Selatan oleh Komite Olimpiade Internasional (IOC). Penunjukan tersebut dilakukan setelah Komite Olimpiade Rusia ditangguhkan karena masalah skandal doping Rusia. Ini adalah kedua kalinya atlet Rusia…

National park in Ukraine Pryazovskyi National Nature ParkUkrainian: Приазовський національний природний паркIUCN category II (national park)Berda River floodplain, Pryazovskyi National ParkLocation of ParkLocationZaporizhzhia OblastNearest cityBerdianskCoordinates46°50′25″N 35°21′32″E / 46.84028°N 35.35889°E / 46.84028; 35.35889Area78,126.92 hectares (193,056 acres; 781 km2; 302 sq mi)Established2010…

Sant'Enrico Morse Gesuita e martire  NascitaBrome, 1595 MorteTyburn, 1º febbraio 1645 Venerato daChiesa cattolica Beatificazione15 dicembre 1929 da papa Pio XI Canonizzazione25 ottobre 1970 da papa Paolo VI Ricorrenza1º febbraio Manuale Enrico Morse, in inglese Henry Morse (Brome, 1595 – Tyburn, 1º febbraio 1645), è stato un presbitero inglese; martirizzato sotto Carlo I, è venerato come santo dalla Chiesa cattolica e ricordato come uno dei santi quaranta martiri di Inghilterra …

George Hermon GillBorn(1895-03-08)8 March 1895Fulham, London, EnglandDied27 February 1973(1973-02-27) (aged 77)East Melbourne, Victoria, AustraliaAllegianceUnited KingdomAustraliaService/branchRoyal Australian NavyYears of service1927–1953RankCommanderBattles/warsFirst World WarSecond World WarAwardsMember of the Order of the British EmpireRelationsEsther Paterson (wife) Commander George Hermon Gill, MBE, VD (8 March 1895 – 27 February 1973) was a Royal Australian Navy offi…

بيتوسكي     الإحداثيات 45°22′24″N 84°57′19″W / 45.373333333333°N 84.955277777778°W / 45.373333333333; -84.955277777778   [1] تقسيم إداري  البلد الولايات المتحدة[2][3]  التقسيم الأعلى مقاطعة إيميت  عاصمة لـ مقاطعة إيميت  خصائص جغرافية  المساحة 13.7653 كيلومتر مربع13.699841 كيلو…

Curio ← Berkelio → Californio    97 Bk                                                                                                                               &…

Kembali kehalaman sebelumnya