Ba spaceIn mathematics, the ba space of an algebra of sets is the Banach space consisting of all bounded and finitely additive signed measures on . The norm is defined as the variation, that is [1] If Σ is a sigma-algebra, then the space is defined as the subset of consisting of countably additive measures.[2] The notation ba is a mnemonic for bounded additive and ca is short for countably additive. If X is a topological space, and Σ is the sigma-algebra of Borel sets in X, then is the subspace of consisting of all regular Borel measures on X.[3] PropertiesAll three spaces are complete (they are Banach spaces) with respect to the same norm defined by the total variation, and thus is a closed subset of , and is a closed set of for Σ the algebra of Borel sets on X. The space of simple functions on is dense in . The ba space of the power set of the natural numbers, ba(2N), is often denoted as simply and is isomorphic to the dual space of the ℓ∞ space. Dual of B(Σ)Let B(Σ) be the space of bounded Σ-measurable functions, equipped with the uniform norm. Then ba(Σ) = B(Σ)* is the continuous dual space of B(Σ). This is due to Hildebrandt[4] and Fichtenholtz & Kantorovich.[5] This is a kind of Riesz representation theorem which allows for a measure to be represented as a linear functional on measurable functions. In particular, this isomorphism allows one to define the integral with respect to a finitely additive measure (note that the usual Lebesgue integral requires countable additivity). This is due to Dunford & Schwartz,[6] and is often used to define the integral with respect to vector measures,[7] and especially vector-valued Radon measures. The topological duality ba(Σ) = B(Σ)* is easy to see. There is an obvious algebraic duality between the vector space of all finitely additive measures σ on Σ and the vector space of simple functions (). It is easy to check that the linear form induced by σ is continuous in the sup-norm if σ is bounded, and the result follows since a linear form on the dense subspace of simple functions extends to an element of B(Σ)* if it is continuous in the sup-norm. Dual of L∞(μ)If Σ is a sigma-algebra and μ is a sigma-additive positive measure on Σ then the Lp space L∞(μ) endowed with the essential supremum norm is by definition the quotient space of B(Σ) by the closed subspace of bounded μ-null functions: The dual Banach space L∞(μ)* is thus isomorphic to i.e. the space of finitely additive signed measures on Σ that are absolutely continuous with respect to μ (μ-a.c. for short). When the measure space is furthermore sigma-finite then L∞(μ) is in turn dual to L1(μ), which by the Radon–Nikodym theorem is identified with the set of all countably additive μ-a.c. measures. In other words, the inclusion in the bidual is isomorphic to the inclusion of the space of countably additive μ-a.c. bounded measures inside the space of all finitely additive μ-a.c. bounded measures. See alsoReferences
Further reading
Information related to Ba space |