Share to: share facebook share twitter share wa share telegram print page

Four-dimensional Chern–Simons theory

In mathematical physics, four-dimensional Chern–Simons theory, also known as semi-holomorphic or semi-topological Chern–Simons theory, is a quantum field theory initially defined by Nikita Nekrasov,[1] rediscovered and studied by Kevin Costello,[2] and later by Edward Witten and Masahito Yamazaki.[3][4][5] It is named after mathematicians Shiing-Shen Chern and James Simons who discovered the Chern–Simons 3-form appearing in the theory.

The gauge theory has been demonstrated to be related to many integrable systems, including exactly solvable lattice models such as the six-vertex model of Lieb and the Heisenberg spin chain[3][4] and integrable field theories such as principal chiral models, symmetric space coset sigma models and Toda field theory, although the integrable field theories require the introduction of two-dimensional surface defects.[5] The theory is also related to the Yang–Baxter equation and quantum groups such as the Yangian.

The theory is similar to three-dimensional Chern–Simons theory which is a topological quantum field theory, and the relation of 4d Chern–Simons theory to the Yang–Baxter equation bears similarities to the relation of 3d Chern–Simons theory to knot invariants such as the Jones polynomial discovered by Witten.[6]

Formulation

The theory is defined on a 4-dimensional manifold which is a product of two 2-dimensional manifolds: , where is a smooth orientable 2-dimensional manifold, and is a complex curve (hence has real dimension 2) endowed with a meromorphic one-form .

The field content is a gauge field . The action is given by wedging the Chern–Simons 3-form with :

Restrictions on underlying manifolds

A heuristic puts strong restrictions on the to be considered. This theory is studied perturbatively, in the limit that the Planck constant . In the path integral formulation, the action will contain a ratio . Therefore, zeroes of naïvely correspond to points at which , at which point perturbation theory breaks down. So may have poles, but not zeroes. A corollary of the Riemann–Roch theorem relates the degree of the canonical divisor defined by (equal to the difference between the number of zeros and poles of , with multiplicity) to the genus of the curve , giving[7] Then imposing that has no zeroes, must be or . In the latter case, has no poles and a complex torus (with a 2d lattice). If , then is the complex projective line. The form has two poles; either a single pole with multiplicity 2, in which case it can be realized as on , or two poles of multiplicity one, which can be realized as on . Therefore is either a complex plane, cylinder or torus.

There is also a topological restriction on , due to a possible framing anomaly. This imposes that must be a parallelizable 2d manifold, which is also a strong restriction: for example, if is compact, then it is a torus.

Surface defects and field theories

The above is sufficient to obtain spin chains from the theory, but to obtain 2-dimensional integrable field theories, one must introduce so-called surface defects. A surface defect, often labelled , is a 2-dimensional 'object' which is considered to be localized at a point on the complex curve but covers which is fixed to be for engineering integrable field theories. This defect is then the space on which a 2-dimensional field theory lives, and this theory couples to the bulk gauge field .

Supposing the bulk gauge field has gauge group , the field theory on the defect can interact with the bulk gauge field if it has global symmetry group , so that it has a current which can couple via a term which is schematically .

In general, one can have multiple defects with , and the action for the coupled theory is then with the collection of fields for the field theory on , and coordinates for .

There are two distinct classes of defects:

  1. Order defects, which introduce new degrees of freedom on the defect which couple to the bulk gauge field.
  2. Disorder defects, where the bulk gauge field has some singularities.

Order defects are easier to define, but disorder defects are required to engineer many of the known 2-dimensional integrable field theories.

Systems described by 4d Chern–Simons theory

Spin chains

Integrable field theories

Master theories of integrable systems

4d Chern–Simons theory is a 'master theory' for integrable systems, providing a framework that incorporates many integrable systems. Another theory which shares this feature, but with a Hamiltonian rather than Lagrangian description, is classical affine Gaudin models with a 'dihedral twist',[8] and the two theories have been shown to be closely related.[9]

Another 'master theory' for integrable systems is the anti-self-dual Yang–Mills (ASDYM) system. Ward's conjecture is the conjecture that in fact all integrable ODEs or PDEs come from ASDYM. A connection between 4d Chern–Simons theory and ASDYM has been found so that they in fact come from a six-dimensional holomorphic Chern–Simons theory defined on twistor space. The derivation of integrable systems from this 6d Chern–Simons theory through the alternate routes of 4d Chern–Simons theory and ASDYM in fact fit into a commuting square.[10]

See also

References

  1. ^ Nekrasov, Nikita (November 1996). Four Dimensional Holomorphic Theories (PDF) (Thesis). Princeton University.
  2. ^ Costello, Kevin (2013). "Supersymmetric gauge theory and the Yangian". arXiv:1303.2632 [hep-th].
  3. ^ a b Costello, Kevin; Witten, Edward; Yamazaki, Masahito (2018). "Gauge Theory And Integrability, I". Notices of the International Congress of Chinese Mathematicians. 6 (1): 46–119. arXiv:1709.09993. doi:10.4310/ICCM.2018.v6.n1.a6.
  4. ^ a b Costello, Kevin; Witten, Edward; Yamazaki, Masahito (2018). "Gauge Theory And Integrability, II". Notices of the International Congress of Chinese Mathematicians. 6 (1): 120–146. arXiv:1802.01579. doi:10.4310/ICCM.2018.v6.n1.a7. S2CID 119592177.
  5. ^ a b Costello, Kevin; Yamazaki, Masahito (2019). "Gauge Theory And Integrability, III". arXiv:1908.02289 [hep-th].
  6. ^ Witten, Edward (2016). "Integrable Lattice Models From Gauge Theory". arXiv:1611.00592 [hep-th].
  7. ^ Donaldson, Simon (2011). Riemann Surfaces (PDF). Oxford University Press. pp. 88, Proposition 16. ISBN 978-0-19-852639-1.
  8. ^ Vicedo, Benoît (4 August 2020). "On Integrable Field Theories as Dihedral Affine Gaudin Models". International Mathematics Research Notices. 2020 (15): 4513–4601. arXiv:1701.04856. doi:10.1093/imrn/rny128.
  9. ^ Vicedo, Benoît (24 February 2021). "4D Chern–Simons theory and affine Gaudin models". Letters in Mathematical Physics. 111 (1): 24. Bibcode:2021LMaPh.111...24V. doi:10.1007/s11005-021-01354-9. ISSN 1573-0530. S2CID 254800771.
  10. ^ Bittleston, Roland; Skinner, David (22 February 2023). "Twistors, the ASD Yang-Mills equations and 4d Chern-Simons theory". Journal of High Energy Physics. 2023 (2): 227. arXiv:2011.04638. Bibcode:2023JHEP...02..227B. doi:10.1007/JHEP02(2023)227. S2CID 226281535.

Read other articles:

Braone BraùComune di BraoneLuas • Total12 km2 (5 sq mi)Ketinggian394 m (1,293 ft)Populasi • Total610DemonimBraonesiKode area telepon0364Situs webSitus web resmi Braone adalah komune yang terletak di distrik Provinsi Brescia, Lombardia, Italia. Kota Braone memiliki luas sebesar 12 km². Braone memiliki penduduk sebesar 610 jiwa. Pranala luar www.comune.brescia.it lbsKomune di Provinsi Brescia, LombardiaAcquafredda • Adro • Agnosine • Al…

Painting by Gustave Doré The EnigmaArtistGustave DoréYear1871MediumOil on canvasDimensions130 cm × 195.5 cm (51 in × 77.0 in)LocationMusée d'Orsay, Paris The Enigma is an oil-on-canvas painting executed in 1871 by French artist Gustave Doré. It is held in the Musée d'Orsay, in Paris.[1] History and description The painting was created in 1871, in the aftermath of the French defeat at the Franco-Prussian War and the Paris Commune, and it te…

Fariz RMLahirFariz Roestam Moenaf5 Januari 1959 (umur 65)Jakarta, IndonesiaNama lainFariz RMPendidikanSMA Negeri 3 JakartaAlmamaterInstitut Teknologi BandungPekerjaanPenyanyipenulis lagumusikusTahun aktif1971–sekarangSuami/istriOneng Diana Riyadini ​ ​(m. 1989; c. 2018)​Anak3Kerabat Triawan Munaf (sepupu) Sherina Munaf (keponakan) Karier musikGenrePopBluesJazz fusionRockKlasikNew waveInstrumenVokalgitarbassdrumkiborpianoArtis terka…

Archaeological site in central Israel Tel Gerisa, Tell Jerishe, Tel NapoleonTel Gerisa (Tel Napoleon)Shown within IsraelLocationTel AvivCoordinates32°05′30″N 34°48′27″E / 32.09167°N 34.80750°E / 32.09167; 34.80750New Israel Grid1820/6667 Tel Gerisa (Hebrew: תל גריסה) or Tell Jerishe[1] and Tell Jarisha (Arabic), commonly known as Tel Napoleon (Hebrew: תל נפוליאון, lit. 'Napoleon's Hill'), as his army camped on it during t…

Los Angeles Kings awardsDustin Brown with the Stanley Cup in 2012.AwardWinsStanley Cup2Clarence S. Campbell Bowl3Art Ross Trophy4Bill Masterton Memorial Trophy3Calder Memorial Trophy1Conn Smythe Trophy2Frank J. Selke Trophy2Hart Memorial Trophy1Jack Adams Award1James Norris Memorial Trophy2King Clancy Memorial Trophy1Lady Byng Memorial Trophy7Lester Patrick Trophy4Mark Messier Leadership Award2NHL Foundation Player Award1NHL Plus-Minus Award *1Ted Lindsay Award2William M. Jennings Trophy2Tot…

ناحية أخترين موقع ناحية أخترين في محافظة حلب تقسيم إداري البلد  سوريا[1] المحافظة محافظة حلب المسؤولون المنطقة منطقة اعزاز الناحية ناحية أخترين رمز الناحية SY020401 خصائص جغرافية إحداثيات 36°31′47″N 37°20′26″E / 36.529722222222°N 37.340555555556°E / 36.529722222222; 37.340555555556   المساح…

Air Teluk KiriDesa Kantor Kepala Desa Air Teluk KiriNegara IndonesiaProvinsiSumatera UtaraKabupatenAsahanKecamatanTeluk DalamKode pos21271Kode Kemendagri12.09.31.2001 Luas... km2Jumlah penduduk... jiwaKepadatan... jiwa/km2 Gapura selamat datang di Desa Air Teluk Kiri Air Teluk Kiri merupakan salah satu desa yang ada di kecamatan Teluk Dalam, Kabupaten Asahan, provinsi Sumatera Utara, Indonesia. Pranala luar (Indonesia) Keputusan Menteri Dalam Negeri Nomor 050-145 Tahun 2022 tentang Pemberia…

German two-seat glider, 1935 Kranich An AB Flygplan Se-103, a Swedish licence-built Kranich. Role Two-seat sailplaneType of aircraft Manufacturer Karl Schweyer AG (primary manufacturer) Designer Hans Jacobs for DFS First flight 1935 Variants SZD-C Żuraw The DFS Kranich is a type of German glider. It was developed by Hans Jacobs for the Deutsche Forschungsanstalt für Segelflug (DFS). History Series production of the Kranich (Crane) took place in the aircraft division of Karl Schweyer AG in Mann…

Koordinat: 41°00′46″N 28°58′50″E / 41.0127°N 28.9805°E / 41.0127; 28.9805 Taman Gülhane Taman Gülhane dilihat dari Istana Topkapı Taman Gülhane (Turki: Gülhane Parkı, Taman Rumah Mawar; dari bahasa Persia: گلخانه Gulkhāna, rumah bunga-bunga) adalah sebuah taman perkotaan bersejarah di distrik Eminönü, Istanbul, Turki; taman tersebut terletak berdekatan dan berada di halaman Istana Topkapı. Bagian selatan dari taman tersebut menjadi salah sa…

Mine CircuitLokasiMine, Yamaguchi Prefecture, JepangZona waktuJSTDibukaNovember 1972DitutupFebruari 2006Panjang3.331 km (2.07 mi)Tikungan16 Sirkuit Mine (みねサーキット) adalah sirkuit balap sepanjang 3,331 km di Nagao, Nishiatsu-cho, Mine, Prefektur Yamaguchi, Jepang. Dulu dikenal sebagai Nishinihon. Trek ditutup pada Februari 2006.[1] Trek ini adalah salah satu sirkuit utama di motorsport Jepang sampai tahun 2002. Setiap tahun, satu atau lebih balapan dari kategori nasional pali…

Election 1954 New York gubernatorial election ← 1950 November 2, 1954 1958 →   Nominee W. Averell Harriman Irving Ives Party Democratic Republican Alliance Liberal Running mate George DeLuca J. Raymond McGovern Popular vote 2,560,738 2,549,613 Percentage 49.61% 49.40% County results Harriman:      50-60%      60-70%      70-80% Ives:      50-60%   …

International service of the Japanese public broadcaster NHK This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: NHK World-Japan – news · newspapers · books · scholar&#…

Gerberoycomune Gerberoy – Veduta LocalizzazioneStato Francia RegioneAlta Francia Dipartimento Oise ArrondissementBeauvais CantoneGrandvilliers TerritorioCoordinate49°32′N 1°51′E / 49.533333°N 1.85°E49.533333; 1.85 (Gerberoy)Coordinate: 49°32′N 1°51′E / 49.533333°N 1.85°E49.533333; 1.85 (Gerberoy) Superficie4,53 km² Abitanti95[1] (2009) Densità20,97 ab./km² Altre informazioniCod. postale60380 Fuso orarioUTC+1 Codice I…

Fornaci di BargafrazioneFornaci di Barga – Veduta LocalizzazioneStato Italia Regione Toscana Provincia Lucca Comune Barga TerritorioCoordinate44°02′00″N 10°28′00″E / 44.033333°N 10.466667°E44.033333; 10.466667 (Fornaci di Barga)Coordinate: 44°02′00″N 10°28′00″E / 44.033333°N 10.466667°E44.033333; 10.466667 (Fornaci di Barga) Altitudine165 m s.l.m. Abitanti2 457 Altre informazioniCod. postale55051 Pref…

Highway in Sydney, New South Wales, Australia Cumberland Highway(numerous constituent roads)New South WalesCumberland Highway as Pennant Hills Road at Thornleigh in 2016Northeast endSouthwest endCoordinates 33°43′12″S 151°06′22″E / 33.719918°S 151.106190°E / -33.719918; 151.106190 (Northeast end) 33°54′53″S 150°55′14″E / 33.914697°S 150.920488°E / -33.914697; 150.920488 (Southwest end) General informationTypeHighwayL…

جزء من سلسلة مقالات سياسة بنينبنين الدستور الدستور حقوق الإنسان السلطة التنفيذية الرئيس رئيس الوزراء السلطة التشريعية الجمعية الوطنية المتحدث الانتخابات الانتخابات رئاسية: 20062011 برلمانية: 20112015 الأحزاب السياسية التقسيم الإداري إدارات بنين بلديات بنين [الإنجليزية] دوائر بن…

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: No. 7 Squadron IAF – news · newspapers · books · scholar · JSTOR (November 2022) (Learn how and when to remove this message) No. 7 Squadron7 Squadron badgeActive1 December 1942Country Republic of IndiaBranch Indian Air ForceRoleAir superiority Specialised Gro…

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)[2…

For the Romanian town called Erzsébetváros in Hungarian, see Dumbrăveni. You can help expand this article with text translated from the corresponding article in Hungarian. (December 2009) Click [show] for important translation instructions. View a machine-translated version of the Hungarian article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate,…

Ban Bí thư Trung ương Đảng Cộng sản Việt Nam Đảng kỳ Đảng Cộng sản Việt Nam Khóa thứ XIII (2021 - tới nay) Ủy viên Tổng Bí thư Nguyễn Phú Trọng Thường trực Ban Bí thư Lương Cường Ủy viên (9) Trần Cẩm TúPhan Đình TrạcNguyễn Hòa BìnhLê Minh Hưng Nguyễn Trọng NghĩaĐỗ Văn ChiếnBùi Thị Minh HoàiLê Minh Khái Lê Hoài Trung Cơ cấu tổ chức Cơ quan chủ quản Ban Chấp hành Trung ương Đảng Cộng …

Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9 
Kembali kehalaman sebelumnya