Share to: share facebook share twitter share wa share telegram print page

Zero sharp

In the mathematical discipline of set theory, 0# (zero sharp, also 0#) is the set of true formulae about indiscernibles and order-indiscernibles in the Gödel constructible universe. It is often encoded as a subset of the natural numbers (using Gödel numbering), or as a subset of the hereditarily finite sets, or as a real number. Its existence is unprovable in ZFC, the standard form of axiomatic set theory, but follows from a suitable large cardinal axiom. It was first introduced as a set of formulae in Silver's 1966 thesis, later published as Silver (1971), where it was denoted by Σ, and rediscovered by Solovay (1967, p.52), who considered it as a subset of the natural numbers and introduced the notation O# (with a capital letter O; this later changed to the numeral '0').

Roughly speaking, if 0# exists then the universe V of sets is much larger than the universe L of constructible sets, while if it does not exist then the universe of all sets is closely approximated by the constructible sets.

Definition

Zero sharp was defined by Silver and Solovay as follows. Consider the language of set theory with extra constant symbols , , ... for each nonzero natural number. Then is defined to be the set of Gödel numbers of the true sentences about the constructible universe, with interpreted as the uncountable cardinal . (Here means in the full universe, not the constructible universe.)

There is a subtlety about this definition: by Tarski's undefinability theorem it is not, in general, possible to define the truth of a formula of set theory in the language of set theory. To solve this, Silver and Solovay assumed the existence of a suitable large cardinal, such as a Ramsey cardinal, and showed that with this extra assumption it is possible to define the truth of statements about the constructible universe. More generally, the definition of works provided that there is an uncountable set of indiscernibles for some , and the phrase " exists" is used as a shorthand way of saying this.

A closed set of order-indiscernibles for (where is a limit ordinal) is a set of Silver indiscernibles if:

  • is unbounded in , and
  • if is unbounded in an ordinal , then the Skolem hull of in is . In other words, every is definable in from parameters in .

If there is a set of Silver indiscernibles for , then it is unique. Additionally, for any uncountable cardinal there will be a unique set of Silver indiscernibles for . The union of all these sets will be a proper class of Silver indiscernibles for the structure itself. Then, is defined as the set of all Gödel numbers of formulae such that

where is any strictly increasing sequence of members of . Because they are indiscernibles, the definition does not depend on the choice of sequence.

Any has the property that . This allows for a definition of truth for the constructible universe:

only if for some .

There are several minor variations of the definition of , which make no significant difference to its properties. There are many different choices of Gödel numbering, and depends on this choice. Instead of being considered as a subset of the natural numbers, it is also possible to encode as a subset of formulae of a language, or as a subset of the hereditarily finite sets, or as a real number.

Statements implying existence

The condition about the existence of a Ramsey cardinal implying that exists can be weakened. The existence of -Erdős cardinals implies the existence of . This is close to being best possible, because the existence of implies that in the constructible universe there is an -Erdős cardinal for all countable , so such cardinals cannot be used to prove the existence of .

Chang's conjecture implies the existence of .

Statements equivalent to existence

Kunen showed that exists if and only if there exists a non-trivial elementary embedding for the Gödel constructible universe into itself.

Donald A. Martin and Leo Harrington have shown that the existence of is equivalent to the determinacy of lightface analytic games. In fact, the strategy for a universal lightface analytic game has the same Turing degree as .

It follows from Jensen's covering theorem that the existence of is equivalent to being a regular cardinal in the constructible universe .

Silver showed that the existence of an uncountable set of indiscernibles in the constructible universe is equivalent to the existence of .

Consequences of existence and non-existence

The existence of implies that every uncountable cardinal in the set-theoretic universe is an indiscernible in and satisfies all large cardinal axioms that are realized in (such as being totally ineffable). It follows that the existence of contradicts the axiom of constructibility: .

If exists, then it is an example of a non-constructible set of natural numbers. This is in some sense the simplest possibility for a non-constructible set, since all and sets of natural numbers are constructible.

On the other hand, if does not exist, then the constructible universe is the core model—that is, the canonical inner model that approximates the large cardinal structure of the universe considered. In that case, Jensen's covering lemma holds:

For every uncountable set of ordinals there is a constructible such that and has the same cardinality as .

This deep result is due to Ronald Jensen. Using forcing it is easy to see that the condition that is uncountable cannot be removed. For example, consider Namba forcing, that preserves and collapses to an ordinal of cofinality . Let be an -sequence cofinal on and generic over . Then no set in of -size smaller than (which is uncountable in , since is preserved) can cover , since is a regular cardinal.

If does not exist, it also follows that the singular cardinals hypothesis holds.[1]p. 20

Other sharps

If is any set, then is defined analogously to except that one uses instead of , also with a predicate symbol for . See Constructible universe#Relative constructibility.

See also

  • 0, a set similar to 0# where the constructible universe is replaced by a larger inner model with a measurable cardinal.

References

  1. ^ P. Holy, "Absoluteness Results in Set Theory" (2017). Accessed 24 July 2024.
  • Drake, F. R. (1974). Set Theory: An Introduction to Large Cardinals (Studies in Logic and the Foundations of Mathematics; V. 76). Elsevier Science Ltd. ISBN 0-444-10535-2.
  • Harrington, Leo (1978). "Analytic determinacy and 0 #". Journal of Symbolic Logic. 43 (4): 685–693. doi:10.2307/2273508. ISSN 0022-4812. MR 0518675.
  • Jech, Thomas (2003). Set Theory. Springer Monographs in Mathematics (Third Millennium ed.). Berlin, New York: Springer-Verlag. ISBN 978-3-540-44085-7. Zbl 1007.03002.
  • Kanamori, Akihiro (2003). The Higher Infinite : Large Cardinals in Set Theory from Their Beginnings (2nd ed.). Springer. ISBN 3-540-00384-3.
  • Martin, Donald A. (1970). "Measurable cardinals and analytic games". Fundamenta Mathematicae. 66 (3): 287–291. doi:10.4064/fm-66-3-287-291. ISSN 0016-2736. MR 0258637.
  • Silver, Jack H. (1971). "Some applications of model theory in set theory". Annals of Mathematical Logic. 3 (1): 45–110. doi:10.1016/0003-4843(71)90010-6. MR 0409188.

Citations

Read other articles:

Bertrand BonelloBonello in 2015Lahir11 September 1968 (umur 55)Nice, PrancisPekerjaanSutradara, penulis latar, produser, komposer, aktorTahun aktif1996–sekarang Bertrand Bonello (bahasa Prancis: [bɔnɛlo]; kelahiran 11 September 1968) adalah seorang sutradara, penulis latar, produser dan komposer Prancis. Latar belakangnya adalah dalam bidang musik klasik, dan ia hidup antara Paris dan Montreal. His work has also been associated with the New French Extremity.[1] Film bu…

Stencil que denuncia la manipulación televisiva. La manipulación de los medios de comunicación consiste en una serie de técnicas relacionadas entre sí con las que miembros de un determinado grupo crean una imagen o una idea que favorece sus intereses particulares.[1]​ Entre estas tácticas destacan las falacias lógicas y la propaganda, que a menudo implican la supresión de información o de otros puntos de vista a través de su distorsión, induciendo a otras personas o grupos de pe…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada September 2016. Sjahrir Riyadi Kepala Bidang Umum Pusjarah TNI Informasi pribadiLahir7 November 1972 (umur 51) Demak, Jawa TengahSuami/istriNy. Nurul LailyAnak1. Syafriyal Burhany2. Syahrul RizalAlma materAkademi Militer (1995)Karier militerPihak IndonesiaDin…

CC01Stasiun Yunoki柚木駅Stasiun JR YunokiLokasiYunoki 213, Fuji-shi, Shizuoka-kenJepangKoordinat35°9′26″N 138°38′21″E / 35.15722°N 138.63917°E / 35.15722; 138.63917Koordinat: 35°9′26″N 138°38′21″E / 35.15722°N 138.63917°E / 35.15722; 138.63917Operator JR CentralJalur Jalur MinobuLetak2.8 kilometer dari FujiJumlah peron1 peron pulauInformasi lainStatusTanpa stafSejarahDibuka1 Oktober 1938Nama sebelumnyaMotoichiba (sampai 1…

Artikel ini memiliki beberapa masalah. Tolong bantu memperbaikinya atau diskusikan masalah-masalah ini di halaman pembicaraannya. (Pelajari bagaimana dan kapan saat yang tepat untuk menghapus templat pesan ini) Artikel ini membutuhkan penyuntingan lebih lanjut mengenai nada artikel tidak sesuai artikel wikipedia pada umumnya. Anda dapat membantu untuk menyuntingnya. Artikel atau bagian ini mengandung parafrase yang mirip dengan satu atau lebih sumber luar yang berhak cipta non-bebas. Ide-ide dal…

Artikel ini perlu diterjemahkan dari bahasa Inggris ke bahasa Indonesia. Artikel ini ditulis atau diterjemahkan secara buruk dari Wikipedia bahasa Inggris. Jika halaman ini ditujukan untuk komunitas bahasa Inggris, halaman itu harus dikontribusikan ke Wikipedia bahasa Inggris. Lihat daftar bahasa Wikipedia. Artikel yang tidak diterjemahkan dapat dihapus secara cepat sesuai kriteria A2. Jika Anda ingin memeriksa artikel ini, Anda boleh menggunakan mesin penerjemah. Namun ingat, mohon tidak menyal…

Football match2012 Scottish League Cup finalThe match programme cover.Event2011–12 Scottish League Cup Celtic Kilmarnock 0 1 Date18 March 2012VenueHampden Park, GlasgowMan of the MatchCammy Bell (Kilmarnock)[1]RefereeWilliam Collum[2]Attendance49,572[1]← 2011 2013 → The 2012 Scottish League Cup final was the 66th final of the Scottish League Cup. The final took place on 18 March 2012 at Hampden Park in Glasgow, in front of a crowd of 49,572. The clubs contes…

California state park Humboldt Lagoons State ParkStone Lagoon and coastal bar viewed from Highway 101Show map of CaliforniaShow map of the United StatesLocationHumboldt County, California, United StatesNearest cityTrinidad, CaliforniaCoordinates41°13′50″N 124°6′10″W / 41.23056°N 124.10278°W / 41.23056; -124.10278Area2,256 acres (9.13 km2)Established1931Governing bodyCalifornia Department of Parks and Recreation Humboldt Lagoons State Park is a C…

Confederate general and American politician (1823–1895) James L. KemperKemper (c. 1861–1865)37th Governor of VirginiaIn officeJanuary 1, 1874 – January 1, 1878LieutenantRobert E. WithersHenry Wirtz ThomasPreceded byGilbert Carlton WalkerSucceeded byFrederick W. M. Holliday27th Speaker of the Virginia House of DelegatesIn officeDecember 2, 1861 – September 7, 1863Preceded byOscar M. CrutchfieldSucceeded byHugh W. SheffeyMember of the Virginia House of Delegates f…

Pour les articles homonymes, voir Gaudin. Ne doit pas être confondu avec Jean-Claude Gardin. Jean-Claude Gaudin Jean-Claude Gaudin en 2011. Fonctions Maire de Marseille 25 juin 1995 – 4 juillet 2020(25 ans et 9 jours) Élection 25 juin 1995 Réélection 25 mars 200121 mars 20084 avril 2014 Prédécesseur Robert Vigouroux Successeur Michèle Rubirola Président de la métropole d'Aix-Marseille-Provence 17 mars 2016 – 6 septembre 2018(2 ans, 5 mois et 20 jours) Préd…

Информация в этой статье или некоторых её разделах устарела. Вы можете помочь проекту, обновив её и убрав после этого данный шаблон. (26 сентября 2019)Герб Молдавии Памятные и юбилейные монеты[1] выпускаются Национальным банком Молдовы из драгоценных (золото — номинала…

Albanian politician (1942–2023) Llambi Gegprifti (14 February 1942 – 1 May 2023) was an Albanian politician who was the mayor of Tirana (precisely Chairman of the Executive Committee of the People's Council of Tirana District) from 1986 through 1987 and 1989 through 1990.[1] He was candidate-member of the Politburo of the Party of Labour of Albania for terms of 1971, 1976, 1981, and 1986 (the last one). Life and career Llambi Gegprifti was born in Pogradec on 14 February 1942. In Jul…

Estate, grade I listed garden in England StourheadThe Palladian bridge and PantheonTypeHouse and gardenLocationStourton with Gasper, Wiltshire, EnglandCoordinates51°06′29″N 2°19′09″W / 51.108°N 2.3191°W / 51.108; -2.3191BuiltHouse: 1721–1724, destroyed in fire, rebuilt 1906Gardens: 1741–1780ArchitectColen CampbellArchitectural style(s)Neo-PalladianGoverning bodyNational Trust Listed Building – Grade IOfficial nameStourhead HouseDesignated6 January 1966Re…

Questa voce sull'argomento calciatori portoghesi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Sílvio Nazionalità  Portogallo Altezza 178 cm Peso 72 kg Calcio Ruolo Difensore Termine carriera 2023 CarrieraSquadre di club1 2006-2007 Atlético Cacém? (?)2007-2008 Odivelas32 (0)2008-2010 Rio Ave45 (0)2010-2011 Braga20 (1)2011-2012 Atlético Madrid11 (0)2012-2013→  Dep…

Impact of coronavirus Part of a series on theCOVID-19 pandemicScientifically accurate atomic model of the external structure of SARS-CoV-2. Each ball is an atom. COVID-19 (disease) SARS-CoV-2 (virus) Cases Deaths Timeline 2019 2020 January responses February responses March responses April responses May responses June responses July responses August responses September responses October responses November responses December responses 2021 January responses February responses March responses Apri…

1332 battle of the Second War of Scottish Independence Battle of Dupplin MoorPart of the Second War of Scottish IndependenceDate11 August 1332LocationPerth, Scotland56°22′N 3°34′W / 56.36°N 3.56°W / 56.36; -3.56Result English/Balliol victoryBelligerents Scotland Disinherited ScotsEnglish supportersCommanders and leaders Donald, Earl of Mar †Robert Bruce †Duncan, Earl of Fife  Edward BalliolHenry BeaumontStrength 15,000 to 40,000 1,500Cas…

Cycling race For the women's race, see 2016 Tour of Flanders for Women. Cycling race 2016 Tour of Flanders2016 UCI World Tour, race 8 of 28Race detailsDates3 April 2016Stages1Distance255 km (158.4 mi)Winning time6h 10' 37Results  Winner  Peter Sagan (SVK) (Tinkoff)  Second  Fabian Cancellara (SUI) (Trek–Segafredo)  Third  Sep Vanmarcke (BEL) (LottoNL–Jumbo)← 2015 2017 → The 2016 Tour of Flanders was a one-day classi…

Questa voce o sezione sull'argomento centri abitati della Spagna non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Descargamaríacomune Descargamaría – Veduta LocalizzazioneStato Spagna Comunità autonoma Estremadura Provincia Cáceres TerritorioCoordinate40°18′14.04″N 6°29′11.04″W…

54e cérémonie des Grammy Awards Grammy Award Organisée par la National Academy of Recording Arts and Sciences Détails Date 12 février 2012 Lieu Staples Center, Los Angeles (Californie) États-Unis Présentateur LL Cool J. Diffusé sur CBS Site web http://www.grammy.com Chronologie 53e cérémonie des Grammy Awards 55e cérémonie des Grammy Awards modifier  La 54e cérémonie des Grammy Awards s'est déroulée le 12 février 2012 au Staples Center à Los Angeles (Ca…

Сельское поселение России (МО 2-го уровня)Новотитаровское сельское поселение Флаг[d] Герб 45°14′09″ с. ш. 38°58′16″ в. д.HGЯO Страна  Россия Субъект РФ Краснодарский край Район Динской Включает 4 населённых пункта Адм. центр Новотитаровская Глава сельского посел…

Kembali kehalaman sebelumnya