Soient E, F et G trois espaces vectoriels sur un corps commutatifK et φ : E×F → G une application. On dit que φ est bilinéaire si elle est linéaire en chacune de ses variables, c'est-à-dire :
Soit A et B deux anneaux (non nécessairement commutatifs), E un A-module à gauche, F un B-module à droite et G un (A,B)-bimodule. Cela signifie que G est un A-module à gauche et un B-module à droite, avec la relation de compatibilité :
.
Soit alors φ : E×F → G une application. Comme plus haut, on dit que φ est bilinéaire si elle est linéaire en chacune de ses variables. Cela se traduit par :
Ceci est bien entendu valide lorsque A = B est un corps non commutatifK, E est un K-espace vectoriel à gauche, F est un K-espace vectoriel à droite, et G est un espace vectoriel à gauche et à droite avec la relation de compatibilité ci-dessus.