La température thermodynamique est une formalisation de la notion expérimentale de température et constitue l’une des grandeurs principales de la thermodynamique. Elle est intrinsèquement liée à l'entropie.
Usuellement notée , la température thermodynamique se mesure en kelvins (symbole K). Encore souvent qualifiée de « température absolue », elle constitue une mesure absolue parce qu’elle traduit directement le phénomène physique fondamental qui la sous-tend : l’agitation des particules constituant la matière (translation, vibration, rotation, niveaux d'énergie électronique). Son point origine, ou zéro absolu, correspond par définition à l’état de la matière où ces particules ont une entropie minimale, ce qui correspond généralement à une énergie minimale[1].
Concept historique de température
La température est une notion qui a évolué avec la connaissance de la matière. On peut distinguer diverses étapes du concept.
Thermodynamique des milieux à l'équilibre
On s'intéresse ici aux états thermodynamiques d'équilibre et aux possibilités (ou à l'impossibilité) de passer d'un état à un autre par une transformation quasi statique, c'est-à-dire s'effectuant par une suite d'états d'équilibre. Cette partie de la thermodynamique devrait en toute logique s'appeler « thermostatique », mais ce mot est défini comme adjectif dans un autre sens.
Au XVIIe – XVIIIe siècle, l'apparition du thermomètre permet de quantifier les notions d'état chaud ou froid d'un milieu, quantités accessibles à la perception corporelle. La température thermométrique est ce que mesure l'appareil : un effet, en l'occurrence la dilatation thermique d'un liquide. Le lien avec la température se fait par le choix d'une échelle de référence, qui est le problème de la thermométrie. Mais cela ne renseigne en rien sur la nature de la température et ne donne que peu d'indications sur ses propriétés.
À la même époque, Joseph Black établit le lien entre température et chaleur en introduisant la capacité thermique[2]. Si on se place à volume constant :
Cette loi montre que la température est une quantité substituable à la chaleur et donc à l'énergie interne en l'absence de travail.
Cette définition permet d'annuler les échanges de chaleur entre deux milieux de température égale mais ne suffit pas pour définir une température thermodynamique de manière unique.
Considérons l'interaction entre deux systèmes isolés de l'extérieur, séparés par une paroi diatherme qui ne laisse passer aucune particule mais permet les échanges de chaleur (voir figure). Si, initialement, les deux systèmes ne sont pas à l'équilibre, un échange thermique a lieu entre A et B jusqu'à ce que l'équilibre soit atteint. Les volumes de A et B restant invariants, la variation de l'entropie totale, somme des variations des entropies de A et B, ne dépend que des variations d'énergies internes de A et B :
Puisque le système est isolé, la variation de l'énergie interne totale est nulle ; il en résulte que :
d'où :
De plus, comme le système est à l'équilibre, son entropie est maximale : toutes les dérivées partielles de l'entropie sont nulles et :
En l'absence de travail du système considéré on peut écrire :
donc :
et par suite
Ce résultat pourrait être obtenu pour toute fonction monotone telle que :
Le choix correspond au choix d'une échelle de température qui est à justifier.
Divers travaux, en particulier ceux dus à Carathéodory[5],[6], permettent de trouver l'expression liant la température à l'entropie à partir de critères mathématiques. En effet, on souhaite faire de une différentielle exacte afin que la variation de l'entropie d'un état à un autre soit indépendante du chemin suivi, ce qui n'est pas le cas de . La quantité qui apparait naturellement est , quantité que l'on retrouve comme potentiel dans les échanges hors équilibre (voir ci-dessous). La dernière étape consiste alors à définir une échelle de température. On se base pour cela sur les propriétés d'un gaz parfait[c], ce qui assure la cohérence de l'approche.
Température et entropie.
Recherche d'un facteur intégrant
On cherche une quantité (facteur intégrant) , fonction des variables d'état, qui permet de passer de la quantité élémentaire de chaleur à une différentielle exacte, étant alors défini comme entropie du système et sur laquelle on pourra appuyer un raisonnement comme celui de l'encadré précédent[d] :
On remarque que cette équation définit la température à une constante multiplicative près, en effet si l'on pose :
ne change pas puisque :
et :
ce qui conduit à une équation identique pour .
Échelle
On a donc montré qu'il existe une variable d'état telle que soit une différentielle exacte. Il reste à la préciser en choisissant une échelle de référence, laquelle est implicitement liée à une équation d'état. Pour des raisons évidentes on va prendre . L'équation sur se simplifie en :
Prenons le cas d'une transformation isochore d'un état 1 vers un état 2, l'expression de devient :
En physique statistique, la fonction de partition d'un système formé d'un ensemble de états microscopiques d'énergie , chacun étant occupé fois, est donnée à une constante de normalisation près par :
On suppose que le nombre N est suffisamment grand pour que l'on puisse considérer Ω(n) comme une fonction et utiliser l'approximation de Stirling. On a donc :
L'état d'équilibre est donné par , soit :
Ce problème est traité comme un problème d'extremum de avec les contraintes de conservation du nombre de particules et de l'énergie . En utilisant deux multiplicateurs de Lagrange et pour les contraintes sur et , respectivement, il vient :
Les états étant indépendants, cette équation n'est vérifiée que si elle est vraie pour chaque état. Sa solution est donc :
L'énergie vaut :
En différentiant, on fait apparaitre la redistribution d'une énergie donnée sur les divers niveaux d'occupation (chaleur) et la variation d'énergie liée à la variation de volume (travail) :
D'où la valeur de par identification avec l'expression classique de la thermodynamique :
Le raisonnement s'applique de la même manière pour le système continu que constitue la translation des particules, les quantités discrètes étant remplacées par les distributions d'énergie et de populations de particules de masse et de vitesse [7] :
On parle ici de thermodynamique hors équilibre, c'est-à-dire des chemins permettant de passer d'un état d'équilibre à un autre par des processus de transport ou de relaxation dans un milieu proche de l'équilibre thermodynamique, cette dernière condition étant nécessaire pour exprimer les flux sous forme de lois linéaires.
Le zéro absolu, qui correspondrait à une matière totalement figée, est rendu inaccessible par le principe d'incertitude de la mécanique quantique, qui prohibe tout état où l'on connaitrait simultanément position et vitesse. La description continue du degré de liberté en translation n'est donc pas pertinente pour les très basses températures. On ne peut pas, pour compter les états, prendre de boîte de taille inférieure à la longueur de Planck.
La température étant indissociablement liée à l'entropie, cette valeur va guider une définition du zéro absolu comme température associée à l'entropie minimale :
où est la dégénérescence du niveau d'énergie le plus bas. Si l'on peut considérer que, en théorie, , il n'en va pas de même en pratique où de faibles perturbations du système mesuré vont lever la dégénérescence et empêcher l'obtention du zéro absolu. La valeur la plus basse de 450pK a été atteinte dans un gaz de sodium au Massachusetts Institute of Technology par l'équipe de Wolfgang Ketterle[10].
Troisième principe de la thermodynamique
L'entropie microscopique d'un système est donnée par :
où est la fonction de partition et une constante d'intégration arbitraire que l'on prendra égale à zéro[11].
On a (voir encadré précédent) :
D'où la limite correspondant à l'énergie minimale :
Le deuxième principe de la thermodynamique a permis de définir la température et une échelle de référence pour celle-ci, basée sur l'équation d'état du gaz parfait (voir encadré « Température et entropie »). L'instrument primaire de mesure est donc assez naturellement un thermomètre à hydrogène, gaz dont le comportement est proche de celui du gaz parfait et qui est peu sensible au phénomène d'adsorption pariétale comme le sont les gaz nobles. Comme on sait définir le zéro absolu, il reste à définir un point de référence. La norme actuelle choisit d'utiliser le point triple d'une eau de composition isotopique donnée comme constituant par définition la valeur 273,16 K[12].
Le rayonnement électromagnétique est constitué de photons qui se comportent au plan thermodynamique comme un gaz. Les échanges matière-rayonnement peuvent permettent à ce dernier d'acquérir un équilibre thermodynamique caractérisé par la distribution de Planck à la température du milieu matériel, qui constitue la température du rayonnement. En l'absence d'interaction photon-photon(en) pour assurer des échanges d'énergie, il faut multiplier les interactions photon-matière pour aboutir à l'équilibre thermodynamique. Un tel rayonnement est appelé rayonnement du corps noir. Il est obtenu par l'utilisation d'une enceinte fermée. Le rayonnement que l'on rencontre dans de nombreux domaines s'éloigne de celui-ci en comportant des raies d'émission ou d'absorption.
Celle-ci tend vers zéro lorsque la longueur d'onde augmente.
Pour un spectre de rayonnement différent de celui du corps noir on définit une température par analogie avec la température du corps noir par où est la constante radiative. Si l'énergie radiative est une quantité physique parfaitement définie, la température radiative ainsi définie n'a pas de grande signification mais elle permet de se ramener à une notion habituelle.
Milieu à plusieurs températures
L'équilibre thermodynamique entraîne l'existence d'une température unique pour tous les degrés de liberté du milieu : translation, décrite par la statistique de Maxwell, rotation, vibration et énergie interne, décrites par la statistique de Boltzmann. Dans certaines situations créés par l'introduction d'énergie dans le système, il se crée des états proches de l'équilibre qui peuvent être raisonnablement bien décrits par plusieurs températures. C'est par exemple le cas d'un plasma froid qui présente des températures de translation différentes pour les électrons et les particules lourdes : ions, atomes, molécules. On peut séparer localement les divers degrés de liberté en effectuant une forte détente (voir figure) à partir des temps caractéristiques différents pour les divers couplages entre ceux-ci[14]. Un tel système relaxe rapidement vers l'équilibre thermodynamique.
Milieu dans lequel la température n'est pas un paramètre pertinent
Dans le cas où l'énergie injectée dans le milieu est très importante, la distribution microscopique s'éloigne notablement des distributions d'équilibre. Il peut cependant se créer des états stationnaires comme dans l'effet Sunyaev-Zel'dovich issu d'interactions Compton multiples (comptonisation). Ce milieu possède une entropie et une énergie interne pour chaque constituant, électrons et photons. On peut donc lui associer deux températures, mais celles-ci n'ont que peu d'intérêt car elle ne permettent pas de caractériser les distributions d'énergie correspondantes.
Certains systèmes quantiques liés à la résonance magnétique nucléaire dans les cristaux ou les gaz ultrafroids possèdent des distributions d'énergie particulière pouvant être entièrement peuplées dans l'état de plus basse énergie (zéro absolu) mais également dans l'état de plus haute énergie[15]. Dans les deux cas, l'entropie est nulle par définition. Entre les deux extrêmes, l'entropie est finie, ce qui fait que est une fonction de d'abord croissante, puis décroissante. Si on adopte la définition standard de la température, cela conduit à une valeur infinie au maximum d'entropie, suivie de valeurs négatives pour les hautes énergies[16]. Ce problème est lié à la définition de l'entropie de Boltzmann, mais il disparait si l'on utilise une définition alternative donnée par Willard Gibbs[17].
Ce problème illustre la difficulté de la définition de la température.
Notes et références
Notes
↑Expression valide dans le cas d'une transformation réversible.
↑Expression valide dans le cas d'une transformation isochore.
↑Mais pas sur l'équation d'état dont la justification relève de l'approche microscopique.
↑On peut également utiliser l'enthalpie au lieu de l'énergie interne.
Références
↑(en) William Thomson, « On an absolute thermometric scale founded on Carnot's theory of the motive power of heat and calculated from Regnaut's observations », Philosophical Magazine, vol. 33, .
↑(en) J. Robison, Lectures on the Elements of Chemistry by Joseph Black, Longman and Rees, (lire en ligne [PDF]).
↑(en) A. E. Leanhardt, T. A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D. E. Pritchard et W. Ketterle, « Cooling Bose-Einstein Condensates Below 500 Picokelvin », Science, vol. 301, no 5639, , p. 1513-1515.
↑(en) Joachim Oxenius, Kinetic Theory of Particles and Photons : Theoretical Foundations of Non-LTE Plasma Spectroscopy, Springer Verlag, coll. « Springer Series in Electrophysics », , 356 p. (ISBN978-3-642-70728-5, lire en ligne).