Анализ (раздел математики)Анализ — объединение нескольких разделов математики, исторически выросшее из классического математического анализа и охватывающее, кроме дифференциального и интегрального исчислений, входящих в классическую часть, такие разделы, как теории функций вещественной и комплексной переменной, теории дифференциальных и интегральных уравнений , вариационное исчисление , гармонический анализ , функциональный анализ , теорию динамических систем и эргодическую теорию , глобальный анализ . Нестандартный анализ находится на стыке математической логики и анализа, применяет методы теории моделей для альтернативной формализации, прежде всего, классических разделов. Считается одним из трёх основных направлений математики, наряду с алгеброй и геометрией. Основной отличительный признак анализа в сравнении с другими направлениями — наличие функций переменных величин как предмета исследования. При этом, если элементарные разделы анализа в учебных программах и материалах часто объединяют с элементарной алгеброй (например, существуют многочисленные учебники и курсы с наименованием «Алгебра и начала анализа»), то современный анализ в значительной степени использует методы современных геометрических разделов, прежде всего, дифференциальной геометрии и топологии. ИсторияОтдельные ответвления от «анализа бесконечно малых», такие как теория обыкновенных дифференциальных уравнений (Эйлер, Иоганн Бернулли, Д’Аламбер), вариационное исчисление (Эйлер, Лагранж), теория аналитических функций (Лагранж, Коши, впоследствии — Риман), начали обособляться ещё в XVIII — первой половине XIX века. Однако началом формирования анализа как самостоятельного современного раздела считаются труды середины XIX века по формализации ключевых понятий классического анализа — вещественного числа, функции, предела, интеграла, прежде всего, в трудах Коши и Больцано, и приобретшие законченную форму к 1870-м — 1880-м годам в работах Вейерштрасса, Дедекинда и Кантора[1]. В этой связи сформировались теория функций вещественной переменной и, в развитии методов работы с аналитическими функциями, — теория функций комплексной переменной. Созданная Кантором в конце XIX века наивная теория множеств дала толчок к появлению понятий метрического и топологического пространств, что в значительной мере изменило весь инструментарий анализа, повысив уровень абстракции изучаемых объектов и переместив фокус с вещественных чисел к нечисловым понятиям. В начале XX века в основном силами французской математической школы (Жордан, Борель, Лебег, Бэр) была создана теория меры, благодаря которой обобщено понятие интеграла, а также построена теория функций действительной переменной . Также в начале XX века начал формироваться функциональный анализ как самостоятельный подраздел современного анализа, изучающий топологические векторные пространства и их отображения . Термин «функциональный анализ» ввёл Адамар, обозначая ветвь вариационного исчисления, разрабатываемую на рубеже XIX и XX веков группой итальянских и французских математиков (в их числе — Вольтерра, Арцела). В 1900 году Фредгольм публикует статью об интегральных уравнения, давшую толчок как для развития теории интегральных уравнений и общей теории интегрирования (Лебег), так и для формирования функционального анализа[2]. В 1906 году в работе Гильберта очерчена спектральная теория, в том же году опубликована работа Фреше, в которой впервые в анализ введены абстрактные метрические пространства[3]. В 1910-е — 1920-е годы уточнены понятия отделимости и впервые применены общетопологические методы к анализу (Хаусдорф), освоены функциональные пространства и начато формирование общей теории нормированных пространств (Гильберт, Рис, Банах, Хан). В период 1929—1932 годов сформирована аксиоматическая теория гильбертовых пространств (Джон фон Нейман, Маршалл Стоун, Рис). В 1936 году Соболевым сформулировано понятие обобщённой функции (позднее в 1940-х годах независимо от него к подобному понятию пришёл Лоран Шварц), получившее широкое распространение во многих разделах анализа и нашедшее широкое применение в приложениях (например, обобщённой является -функция Дирака). В 1930-е — 1950-е годы в функциональном анализе получены значительные результаты за счёт применения общеалгебраических инструментов (векторные решётки, операторные алгебры, банаховы алгебры). К середине XX века получили самостоятельное развитие такие направления как теория динамических систем и эргодическая теория (Джордж Биркгоф, Колмогоров, фон Нейман), существенно обобщены результаты гармонического анализа за счёт применения общеалгебраических средств — топологических групп и представлений (Вейль, Петер[англ.], Понтрягин). Начиная с 1940-х — 1950-х годов методы функционального анализа нашли применение в прикладных сферах, в частности, в работах Канторовича 1930-х — 1940-х годов инструменты функционального анализа использованы в вычислительной математике и экономике (линейное программирование). В 1950-е годы в трудах Понтрягина и учеников в развитие методов вариационного исчисления создана теория оптимального управления. Начиная со второй половины XX века с развитием дифференциальной топологии к анализу примкнуло новое направление — анализ на многообразиях, получившее название «глобальный анализ» , фактически начавшее формироваться ранее, в 1920-е годы в рамках теории Морса как обобщение вариационного исчисления (называемое Морсом «вариационное исчисление в целом», англ. variation calculus in large). К этому направлению относят созданные в развитие теории бифуркаций динамических систем (Андронов) такие направления, как теорию особенностей (Уитни, 1955) и теорию катастроф (Том, 1959 и Мазер, 1965), получившие в 1970-е годы развитие в работах Зимана и Арнольда. В начале 1960-х годов Робинсоном создан нестандартный анализ — альтернативная формализация как классических, так и смежных областей анализа с использованием инструментария теории моделей. Если вначале нестандартный анализ рассматривался лишь как логическая техника обоснования плохо формализованных в классических разделах понятий (прежде всего, бесконечно больших и бесконечно малых величин), то с разработкой в конце 1970-х годов Нельсоном (англ. Edward Nelson) теории внутренних множеств[англ.] и последовавших обобщений, обнаружилось, что конструкции нестандартного анализа применимы практически во всех отраслях математики, как естественно присущие любым математическим объектам[4]. Кроме того, благодаря выразительности языка нестандартного анализа его средствами выявлены результаты, которые не были обнаружены в классическом анализе, но при этом принципиально могли бы быть получены и стандартными, классическими средствами[5]. Также в 1970-е — 1980-е годы в развитие метода форсинга (созданного Коэном для доказательства неразрешимости в ZFC континуум-гипотезы) в работах Соловея, Скотта и Вопенки (чеш. Petr Vopěnka) разработана теория булевозначных моделей[англ.], на основе которой оформилась самостоятельная ветвь нестандартного анализа — булевозначный анализ[6]. Классический математический анализКлассический математический анализ — раздел, фактически полностью соответствующий историческому «анализу бесконечно малых», состоит из двух основных компонентов: дифференциального и интегрального исчислений. Основные понятия — предел функции, дифференциал, производная, интеграл, главные результаты — формула Ньютона — Лейбница, связывающая определённый интеграл и первообразную и ряд Тейлора — разложение в ряд бесконечно дифференцируемой функции в окрестности точки. Под термином «математический анализ» обычно понимают именно этот классический раздел, при этом он используется в основном в учебных программах и материалах. При этом изучение основ анализа входит в большинство среднеобразовательных программ, а более или менее полное изучение предмета включено в программы первых лет высшего образования для широкого круга специальностей, в том числе многих гуманитарных. В англо-американской образовательной традиции для обозначения классического математического анализа используется термин «исчисление» (англ. calculus). Теория функций вещественной переменнойТеория функций вещественной переменной (иногда именуется кратко — теория функций) возникла вследствие формализации понятий вещественного числа и функции[7]: если в классических разделах анализа рассматривались только функции, возникающие в конкретных задачах, естественным образом, то в теории функций сами функции становятся предметом изучения, исследуется их поведение, соотношения их свойств. Один из результатов, иллюстрирующих специфику теории функций вещественной переменной[8] — факт, что непрерывная функция может не иметь производной ни в одной точке (притом согласно более ранним представлениям классического математического анализа дифференцируемость всех непрерывных функций не подвергалась сомнению). Основные направления теории функций вещественной переменной[9]:
Теория функций комплексной переменнойПредмет изучения теории функций комплексной переменной — числовые функции, определённые на комплексной плоскости или комплексном евклидовом пространстве , при этом наиболее тщательно изучены аналитические функции, играющие важную связующую роль практически для всех ветвей математического анализа. В частности, понятие аналитической функции обобщено для произвольных банаховых пространств, тем самым многие результаты теории функций комплексной переменной нашли обобщение в функциональном анализе. Функциональный анализФункциональный анализ как раздел характеризуется наличием в качестве предмета изучения топологических векторных пространств и их отображений с наложенными на них различными алгебраическими и топологическими условиями[11]. Центральную роль в функциональном анализе играют функциональные пространства, классический пример — пространства всех измеримых функций, чья -я степень интегрируема; при этом уже — бесконечномерное пространство (гильбертово пространство), и пространства бесконечных размерностей присущи функциональному анализу настолько, что иногда весь раздел определяется как часть математики, изучающая бесконечномерные пространства и их отображения[12]. Важнейшей формой пространств в классических разделах функционального анализа являются банаховы пространства — нормированные векторные пространства, полные по метрике, порождённой нормой: значительная доля интересных на практике пространств являются таковыми, среди них — все гильбертовы пространства, пространства , пространства Харди, пространства Соболева. Важную роль играют в функциональном анализе играют алгебраические структуры, являющиеся банаховыми пространствами — банаховы решётки и банаховы алгебры (в том числе — -алгебры, алгебры фон Неймана). Теория операторов, изучающая ограниченные линейные операторы — крупный подраздел функционального анализа, включающий спектральную теорию, теории различных классов операторов (в частности, компактные, фредгольмовы, замкнутые операторы), теории операторов на специальных нормированных пространствах (на гильбертовых пространствах — самосопряжённые, нормальные, унитарные, положительные операторы, на функциональных пространствах — дифференциальные, псевдодифференциальные, интегральные и псевдоинтегральные операторы и другие), теорию инвариантных подпространств, теории классов операторов — операторные алгебры, операторные полугруппы и другие. Вариационное исчислениеОсновной объект изучения вариационного исчисления — вариации функционалов, при помощи которых решаются экстремальные задачи, зависящие от выбора одной или нескольких переменных функций. Типичная вариационная задача — отыскание функции, которая удовлетворяет условию стационарности некоторого заданного функционала, то есть такой функции, бесконечно малые возмущения которой не вызывают изменения функционала по меньшей мере в первом порядке малости. Классическое вариационное исчисление оказало большое инструментальное влияние на многие разделы физики (вариационные принципы механики, также нашло широкое применение в электродинамике, квантовой механике). Теория оптимального управления — применение методов вариационного исчисления для существенно более широкого класса задач: определения наилучших параметров систем, в условиях когда управляющие параметры могут принимать и граничные значения. Гармонический анализОсновной принцип гармонического анализа — сведе́ние задач анализа к исследованию инструментами для гармонических функций и их обобщений. Классический гармонический анализ включает в качестве основных средств теории тригонометрических рядов, преобразований Фурье, почти периодических функций, рядов Дирихле[13]. В абстрактном гармоническом анализе классические методы обобщены для абстрактных структур с использованием таких понятий, как мера Хаара и представления групп[14]. Важнейший результат коммутативного гармонического анализа — теорема Понтрягина о двойственности, благодаря которой относительно простыми общеалгебраическими средствами описываются практически все классические результаты гармонического анализа. Дальнейшее развитие теории — некоммутативный гармонический анализ, имеющий важные приложения в квантовой механике. Дифференциальные и интегральные уравненияВ связи с дифференциальными уравнениями в анализе выделяется два основных направления — теория обыкновенных дифференциальных уравнений и теория дифференциальных уравнений в частных производных (в учебных материалах и некоторых классификациях фигурирующая как «уравнения математической физики», так как исследование такого класса уравнений составляет основное наполнение математической физики). В теории интегральных уравнений, кроме классических методов решения, выделяются такие направления, как теория Фредгольма, оказавшая заметное влияние на формирование функционального анализа как самостоятельного раздела, в частности, способствовавшая формированию понятия гильбертова пространства. Теория динамических систем и эргодическая теорияИз основных направлений изучения дифференциальных уравнений в качестве самостоятельных разделов выделились теория динамических систем, изучающая эволюцию во времени механических систем, и эргодическая теория, нацеленная на обоснование статистической физики. Несмотря на прикладной характер задач, к этим разделам относится широкий пласт понятий и методов общематематического значения, в частности, таковы понятия устойчивости и эргодичности. Глобальный анализГлобальный анализ — раздел анализа, изучающий функции и дифференциальные уравнения на многообразиях и векторных расслоениях[15]; иногда это направление обозначается как анализ на многообразиях. Одно из первых направлений глобального анализа — теория Морса и её применение к задачам о геодезических на римановых многообразиях; направление получило название вариационное исчисление в целом. Основные результаты — лемма Морса, описывающая поведение гладких функций на гладких многообразиях в невырожденных особых точках, и такой гомотопический инвариант, как категория Люстерника — Шнирельмана. Многие из конструкций и утверждений обобщены на случай бесконечномерных многообразий (гильбертовых многообразий, банаховых многообразий[англ.]). Результаты, полученные в рамках глобального анализа особых точек нашли широкое и для решения чисто топологических задач, такова, например, теорема периодичности Ботта[англ.], во многом послужившая основанием для самостоятельного раздела математики — -теории, а также теорема об -кобордизме, следствием которой является выполнение гипотезы Пуанкаре для размерности, превосходящей 4. Ещё один крупный блок направлений глобального анализа, получивший широкое применение в физике и экономике — теория особенностей, теория бифуркаций и теория катастроф; основное направление исследований данного блока — классификация поведений дифференциальных уравнений или функций в окрестностях критических точек и выявление характерных особенностей соответствующих классов. Нестандартный анализНестандартный анализ — формализация ключевых понятий анализа средствами математической логики, основная идея — формальная актуализация бесконечно больших и бесконечно малых величин, и логическая формализация манипуляций с ними. При этом средства нестандартного анализа оказываются весьма удобными: ими получены результаты, ранее не найденные классическими средствами из-за недостатка наглядности[5]. Нестандартный анализ разбивается на два направления: семантическое, использующее на теоретико-модельные инструменты, и синтаксическое, использующее разного рода расширения стандартной теории множеств. Семантическое направление базируется на локальной теореме Мальцева, позволяющей переносить свойства с локальных частей моделей на всю модель[16]. Существует крупная самостоятельная ветвь семантического направления нестандартного анализа — булевозначный анализ, конструирующийся вокруг понятия булевозначной модели[англ.][17]. Синтаксическое направление основывается на теории внутренних множеств[англ.], ключевой идеей которого является введение понятия нестандартных элементов и предиката стандартности и аксиоматизация присущих им свойств. Другой вариант синтаксической формализации — альтернативная теория множеств[англ.][18]. Приложения
Примечания
Литература
|