Двойственная кривая (или дуальная кривая) к заданной кривой на проективной плоскости — это кривая на двойственной проективной плоскости, состоящая из касательных к заданной гладкой кривой. В этом случае кривые называются взаимно двойственными (дуальными). Понятие может быть обобщено для негладких кривых и на многомерное пространство.
Точки и прямые на проективной плоскости играют симметричные роли по отношению друг к другу: для любой проективной плоскости можно рассмотреть двойственную проективную плоскость , в которой точками по определению являются прямые исходной плоскости . В этом случае прямым плоскости будут соответствовать точки , а отношение инцидентности будет то же самое с точностью до перестановки аргументов.
Определение
Пусть дана гладкая кривая на проективной плоскости . Рассмотрим множество всех её касательных. Это множество можно рассмотреть как множество точек двойственной плоскости . Оно будет образовывать кривую (не обязательно гладкую) в , которая называется двойственной кривой к [1].
Из-за симметрии между пространством и двойственным пространством, кривой, двойственной к кривой в (то есть к однопараметрическому семейству прямых в ), будет кривая в . Эта кривая называется огибающей семейства прямых[2].
Пример
Рассмотрим эллипс, заданный уравнением (см. рисунок). Касательными к нему будут прямые, заданные уравнениями , где . Таким образом, двойственная к этому эллипсу кривая задаётся уравнением в координатах , .
Свойства
Двойственные кривые обладают следующими свойствами[1][3]:
Кривая, двойственная к двойственной кривой, будет исходной кривой: .
Если исходная кривая — кривая второго порядка, то двойственная ей кривая тоже будет второго порядка.
Каждой двойной касательной (то есть касательной к двум точкам) исходной кривой соответствует точка самопересечения двойственной кривой.
Двойственные кривые применяются для описания преобразований Лежандра в гамильтоновой механике. А именно, преобразование Лежандра — это переход от кривой к двойственной кривой, записанный в аффинных координатах. Это связано со следующим свойством: график строго выпуклой функции двойственен графику преобразования Лежандра для этой функции[1].
Параметризация
Для параметрически заданной кривой двойственная кривая определяется уравнениями[4]:
Обобщения
Негладкие кривые
Понятие двойственности можно обобщить для ломаных и вообще для негладких кривых, если вместо касательных рассматривать опорные прямые. Прямая на плоскости называется опорной к кривой, если она содержит точку кривой, но при этом вся кривая лежит в одной полуплоскости от этой прямой. Для гладких кривых единственной опорной прямой, проходящей через данную точку кривой, является касательная к этой кривой. Таким образом, можно обобщить понятия двойственности для негладких кривых: двойственной кривой к произвольной кривой называется множество её опорных прямых.
Множество опорных прямых для ломаной также образует ломаную: опорные прямые, проходящие через вершины исходной ломаной, образуют отрезок двойственной плоскости.
Эта ломаная называется двойственной ломаной. Её вершины получаются из отрезков исходной ломаной[1]. В частности, двойственным к многоугольнику будет многоугольник, который называется двойственным многоугольником[англ.].
Двойственная гиперповерхность
Понятие двойственности можно обобщить и на проективное пространство произвольной размерности. Двойственным проективным пространством называется пространство, состоящее из гиперплоскостей исходного пространства.
Для заданной выпуклой гиперповерхности в проективном пространстве множество гиперплоскостей, опорных к этой гиперповерхности, называется двойственной гиперповерхностью[1].
Примеры
Пусть дана окружность, заданная в некоторой системе координат уравнением . Касательной к окружности в точке , где , является прямая . Координатами этой прямой в двойственной системе координат будет пара . Таким образом, двойственной кривой к окружности будет множество точек двойственной кривой с координатами , где , то есть опять окружность.
В более общем случае, если в пространстве задана норма, то в сопряжённом пространстве можно рассмотреть сопряжённую норму[англ.]. Каждой точке пространства соответствует гиперплоскость, заданная уравнением . Оказывается, что поверхность, сопряжённая единичной сфере в пространстве (в смысле заданной нормы), является двойственной к единичной сфере в двойственном пространстве в смысле сопряжённой нормы[1].
Так, например, куб — это «сфера» в смысле равномерной нормы (). Норма, сопряжённая , является -нормой. Следовательно, поверхностью, двойственной к кубу, будет «сфера» в , то есть октаэдр.