Хром
Хром (химический символ — Cr, от лат. Chromium) — химический элемент 6-й группы (по устаревшей классификации — побочной подгруппы шестой группы, VIB), четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 24. Простое вещество хром (при комнатной температуре) — это твёрдый переходный металл голубовато-белого цвета. Хром иногда относят к чёрным металлам. Происхождение названияНазвание «хром» произошло от греч. χρῶμα — цвет, краска — из-за разнообразия окраски соединений этого вещества. ИсторияХром открыт во Франции в 1797 году химиком Л. Н. Вокленом, который выделил новый тугоплавкий металл с примесью карбидов. Он прокалил зелёный оксид хрома Cr2O3 с углём, а сам оксид получил разложением «Сибирского красного свинца» — минерала крокоита PbCrO4, добытого на Среднем Урале, в Березовском золоторудном месторождении, и впервые упомянутого в труде М. В. Ломоносова «Первые основания металлургии» (1763 год), как красная свинцовая руда. Современный способ получения чистого хрома изобретён в 1894 году, он отличается от способа Воклена только видом восстановителя. В 20-х годах XX века разработан процесс электролитического покрытия железа хромом. Происхождение и нахождение в природеХром появился во Вселенной из-за взрывов белых карликов и взрывов массивных звезд. Хром является довольно распространённым элементом в земной коре — 0,03 % по массе[3][4]. Основное соединения хрома — хромистый железняк (хромит) FeO·Cr2O3. Вторым по значимости минералом является крокоит PbCrO4. МесторожденияСамые большие месторождения хрома находятся в ЮАР (1 место в мире), Казахстане, России, Зимбабве, Мадагаскаре. Также есть месторождения на территории Турции, Индии, Армении[5], Бразилии, на Филиппинах[6]. Главные месторождения хромовых руд в РФ известны на Урале (Донские и Сарановское). Мировое производство в 2012 году составило около 9 млн тонн хрома. Геохимия и минералогияСреднее содержание хрома в различных изверженных породах резко непостоянно. В ультраосновных породах (перидотитах) оно достигает 2 кг/т, в основных породах (базальтах и др.) — 200 г/т, а в гранитах десятки г/т. Кларк хрома в земной коре 83 г/т. Он является типичным литофильным элементом и почти весь заключён в минералах типа хромшпинелидов. Хром вместе с железом, титаном, никелем, ванадием и марганцем составляют одно геохимическое семейство. Различают три основных минерала хрома: магнохромит (Mg, Fe)Cr2O4, хромпикотит (Mg, Fe)(Cr, Al)2O4 и алюмохромит (Fe, Mg)(Cr, Al)2O4. По внешнему виду они неразличимы, и их неточно называют «хромиты». Состав их изменчив:
Собственно, хромит, то есть FeCr2O4 сравнительно редок. Помимо различных хромитов, хром входит в состав ряда других минералов — хромовой слюды (фуксита), хромового хлорита, хромвезувиана, хромдиопсида, хромтурмалина, хромового граната (уваровита) и др., которые нередко сопровождают руды, но сами промышленного значения не имеют. В экзогенных условиях хром, как и железо, мигрирует в виде взвесей и может накапливаться в глинах. Наиболее подвижной формой являются хроматы. Физические свойстваВ свободном виде — голубовато-белый металл с кубической объёмноцентрированной решёткой, a = 0,28845 нм. Ниже температуры 38 °C является антиферромагнетиком, выше переходит в парамагнитное состояние (точка Нееля). Хром имеет твёрдость по шкале Мооса 8.5[7], Чистый хром — это хрупкий металл, и при ударе молотком он разбивается. Также он является самым твёрдым из чистых металлов. Очень чистый хром достаточно хорошо поддаётся механической обработке. ИзотопыИзвестны изотопы хрома с массовыми числами от 42 до 67 (количество протонов 24, нейтронов от 18 до 43) и 2 ядерных изомера. Природный хром состоит из четырёх стабильных изотопов (50Cr (изотопная распространённость 4,345 %), 52Cr (83.789 %), 53Cr (9.501 %), 54Cr (2.365 %)). Среди искусственных изотопов самый долгоживущий 51Cr (период полураспада 27 суток). Период полураспада остальных не превышает одних суток. Химические свойстваХарактерные степени окисленияДля хрома характерны степени окисления +2, +3 и +6 (см. табл.), а также условно +5. Практически все соединения хрома окрашены[8].
Простое веществоХром в виде простого вещества представляет собой металл с голубым оттенком. Он устойчив на воздухе за счёт пассивирования, по этой же причине не реагирует с серной и азотной кислотами. При нагреве до 2000 °C металлический хром сгорает с образованием зелёного оксида хрома(III) Cr2O3, обладающего амфотерными свойствами. Синтезированы соединения хрома с бором (бориды Cr2B, CrB, Cr3B4, CrB2, CrB4 и Cr5B3), с углеродом (карбиды Cr23C6, Cr7C3 и Cr3C2), c кремнием (силициды Cr3Si, Cr5Si3 и CrSi) и азотом (нитриды CrN и Cr2N). Соединения Cr(II)Степени окисления +2 соответствует основный оксид CrO (чёрный). Соли Cr2+ (растворы голубого цвета) получаются при восстановлении солей Cr3+ или дихроматов цинком в кислой среде («водородом в момент выделения», атомарным водородом): Все соли Cr2+ — сильные восстановители, при стоянии вытесняют водород из воды[9]. Кислородом воздуха, особенно в кислой среде, Cr2+ окисляется, в результате чего голубой раствор быстро зеленеет. Коричневый или жёлтый гидроксид Cr(OH)2 осаждается при добавлении щелочей к растворам солей хрома(II). Синтезированы дигалогениды хрома CrF2, CrCl2, CrBr2 и CrI2 Соединения Cr(III)Степени окисления +3 соответствует амфотерный оксид Cr2O3 и гидроксид Cr(OH)3 (оба — зелёного цвета). Это — наиболее устойчивая степень окисления хрома. Соединения хрома в этой степени окисления имеют цвет от грязно-лилового (в водных растворах ион Cr3+ существует в виде аквакомплексов [Cr(H2O)6]3+) до зелёного (в координационной сфере присутствуют анионы). Cr3+ склонен к образованию двойных сульфатов вида MICr(SO4)2·12H2O (квасцов) Гидроксид хрома (III) получают, действуя аммиаком на растворы солей хрома (III): Можно использовать растворы щелочей, но в их избытке образуется растворимый гидроксокомплекс: Сплавляя Cr2O3 со щелочами, получают хромиты: Непрокаленный оксид хрома(III) растворяется в щелочных растворах и в кислотах: При окислении соединений хрома(III) в щелочной среде образуются соединения хрома(VI): То же самое происходит при сплавлении оксида хрома(III) со щёлочью и окислителями, или со щёлочью на воздухе (расплав при этом приобретает жёлтую окраску): Хромистая кислота (HCrO2) со степенью окисления хрома +3 не существует: отвечающее этому составу соединение CrO(OH) имеет основный характер и не реагирует с щелочами. Однако известны хромиты металлов, содержащие хромит-ион CrO− Соединения хрома(IV)При осторожном разложении оксида хрома(VI) CrO3 в гидротермальных условиях получают оксид хрома(IV) CrO2, который является ферромагнетиком и обладает металлической проводимостью. Среди тетрагалогенидов хрома устойчив CrF4, тетрахлорид хрома CrCl4 существует только в парах. Соединения хрома(V)Малоустойчивы, одно из соединений хрома это хромат(V) бария Ba3(CrO4)2 который может быть получен спеканием при 800° гидроксида бария и хромата бария. Соединения хрома(VI)Степени окисления +6 соответствует кислотный оксид хрома(VI) CrO3 и целый ряд кислот, между которыми существует равновесие. Простейшие из них — хромовая H2CrO4 и двухромовая H2Cr2O7. Они образуют два ряда солей: жёлтые хроматы и оранжевые дихроматы соответственно. Оксид хрома(VI) CrO3 образуется при взаимодействии концентрированной серной кислоты с растворами дихроматов. Типичный кислотный оксид, при взаимодействии с водой он образует сильные неустойчивые хромовые кислоты: хромовую H2CrO4, дихромовую H2Cr2O7 и другие изополикислоты с общей формулой H2CrnO3n+1. Увеличение степени полимеризации происходит с уменьшением рН, то есть увеличением кислотности: Но если к оранжевому раствору K2Cr2O7 прилить раствор щёлочи, как окраска вновь переходит в жёлтую, так как снова образуется хромат K2CrO4: До высокой степени полимеризации, как это происходит у вольфрама и молибдена, не доходит, так как полихромовая кислота распадается на оксид хрома(VI) и воду: Растворимость хроматов примерно соответствует растворимости сульфатов. В частности, жёлтый хромат бария BaCrO4 выпадает при добавлении солей бария как к растворам хроматов, так и к растворам дихроматов: Образование кроваво-красного малорастворимого хромата серебра используют для обнаружения серебра в сплавах при помощи пробирной кислоты. Известны пентафторид хрома CrF5 и малоустойчивый гексафторид хрома CrF6. Также получены летучие оксигалогениды хрома CrO2F2 и CrO2Cl2 (хромилхлорид). Соединения хрома(VI) — сильные окислители, например: Добавление к дихроматам перекиси водорода, серной кислоты и органического растворителя (эфира) приводит к образованию синего монопероксида хрома(VI) CrO5 (CrO(O2)2), который экстрагируется в органический слой; данная реакция используется как аналитическая. ПолучениеХром встречается в природе в основном в виде хромистого железняка Fe(CrO2)2 (хромит железа). Из него получают феррохром восстановлением в электропечах коксом (углеродом): Феррохром применяют для производства легированных сталей. Чтобы получить чистый хром, реакцию ведут следующим образом: 1) сплавляют хромит железа с карбонатом натрия (кальцинированная сода) на воздухе: 2) растворяют хромат натрия и отделяют его от оксида железа; 3) переводят хромат в дихромат, подкисляя раствор и выкристаллизовывая дихромат:
4) получают чистый оксид хрома восстановлением дихромата натрия углём: 5) с помощью алюминотермии получают металлический хром: 6) с помощью электролиза получают электролитический хром из раствора хромового ангидрида в воде, содержащего добавку серной кислоты. При этом на катодах совершаются в основном 3 процесса:
ПрименениеХром — важный компонент во многих легированных сталях (в частности, нержавеющих), а также и в ряде других сплавов. Добавка хрома существенно повышает твёрдость и коррозийную стойкость сплавов. Также используется в хром-ванадиевых стальных сплавах (хром-ванадиевая сталь, Chromium-vanadium steel), применяемых, например, для изготовления железнодорожных рельсов, к которым предъявляются высокие требования по усталостной прочности, стойкости к низким температурам и перепадам температур (порог хладноломкости должен быть ниже –60...–70 градусов Цельсия), в то же время они должны быть достаточно упругими, т.е. в широких пределах подвергаться нагрузкам без остаточных деформаций, быть устойчивыми к сильным ударным нагрузкам. Используется в качестве износоустойчивых и красивых гальванических покрытий (хромирование). Хром применяется для производства сплавов хром-30 и хром-90, используемых в производстве сопел мощных плазмотронов и в авиакосмической промышленности. Биологическая роль и физиологическое действиеХром — один из биогенных элементов, он входит в состав тканей растений и животных. У животных хром участвует в обмене липидов, белков (входит в состав фермента трипсина), углеводов. Снижение содержания хрома в пище и в крови приводит к уменьшению скорости роста, увеличению холестерина в крови. В чистом виде хром довольно токсичен[10], металлическая пыль хрома раздражает ткани лёгких. Соединения хрома(III) вызывают дерматиты. Соединения хрома в степени окисления +6 особо токсичны. Практически вся хромовая руда обрабатывается через преобразование в дихромат натрия. В 1985 году было произведено примерно 136 000 тонн шестивалентного хрома[11]. Другими источниками шестивалентного хрома являются триоксид хрома и различные соли — хроматы и дихроматы. Шестивалентный хром используется при производстве нержавеющих сталей, текстильных красок, консервантов для дерева, при хромировании, гальваническом, горячем цинковании и пр. Шестивалентный хром является канцерогеном (при вдыхании)[12]. На многих рабочих местах сотрудники подвержены воздействию шестивалентного хрома, например, при гальваническом хромировании или сварке нержавеющих сталей[12]. В Европейском союзе использование шестивалентного хрома существенно ограничено директивой RoHS. Шестивалентный хром транспортируется в клетки человеческого организма с помощью сульфатного транспортного механизма благодаря своей близости к сульфатам по структуре и заряду. Трёхвалентный хром, более часто встречающийся, не транспортируется в клетки. Внутри клетки Cr(VI) восстанавливается до метастабильного пятивалентного хрома (Cr(V)), затем до трёхвалентного хрома (Cr(III)). Трёхвалентный хром, присоединяясь к протеинам, создаёт гаптены, которые включают иммунную реакцию. После их появления чувствительность к хрому не пропадает. В этом случае даже контакт с текстильными изделиями, окрашенными хромсодержащими красками или с кожей, обработанной хромом, может вызвать раздражение кожи. Витамин C и другие агенты реагируют с хроматами и образуют Cr(III) внутри клетки[13]. Продукты шестивалентного хрома являются генотоксичными канцерогенами. Хроническое вдыхание соединений шестивалентного хрома увеличивает риск заболеваний носоглотки, риск рака лёгких. Лёгкие особенно уязвимы из-за большого количества мелких капилляров. В США предельно допустимая концентрация шестивалентного хрома в воздухе составляет 5 мкг/м³ (0,005 мг/м³)[14][15]. В России предельно допустимая концентрация хрома(VI) существенно ниже — 1,5 мкг/м³ (0,0015 мг/м³)[16]. Одним из методов избежания 6-валентного хрома является переход от технологий гальванического хромирования к газотермическому и вакуумному напылению, также чаще используется цинк-ламельная оцинковка (погружение в покрывающий состав из чешуек цинка, частиц алюминия, магния и др металлов) вместо, например, горячего цинкования (погружение в расплав цинка). Основанный на реальных событиях фильм «Эрин Брокович» режиссёра Стивена Содерберга рассказывает о крупном судебном процессе, связанном с загрязнением окружающей среды шестивалентным хромом, в результате которого у многих людей развились серьёзные заболевания[17]. См. такжеПримечания
Литература
Ссылки
|