X²+1素数x²+1素数问题是一個未解决的数学问题,其陳述如下:是否存在无穷个正整数x,使得x²+1為素数? 這個問題得到许多数论学者的關注,有學者認為這個問題比孪生素数猜想更加困难,因为在正整数中,x²+1的数比p+2稀少,故x²+1为素数的概率更小。[1] 10000以內的x²+1素数為( A002496):2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601, 2917, 3137, 4357, 5477, 7057, 8101, 8837。 歷史在1912年的国际数学家大会上,愛德蒙·蘭道就素數理論的發展和黎曼ζ函數作演說,當中他提及四個“以目前的科學狀況無法攻克”的關於素數的問題之中,第四個問題便是:“函數u²+1在u取整數值時是否給出了無窮多個質數?”[2] 推論一般地說,設f(x)=ax^2+bx+c為整系數二次函數可以證明,若f(x)能取無窮多次的質數值,那麼a, b, c須符合以下條件: 一個廣義化的猜想便是,若a為正數且a, b, c符合上述3個條件,那麼f(x)便能取無窮多次的質數值(見布尼亚科夫斯基猜想)。[3] 進展根據弗里德蘭德-伊萬涅茨定理,存在無窮多個形如的質數。 在1978年,亨里克·伊萬尼克證明了存在無窮多個x,使得至多是兩個質數的積。 註釋
参考文献
参见Information related to X²+1素数 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve