This article records new taxa of plants that are scheduled to be described during the year 2018, as well as other significant discoveries and events related to paleobotany that occurred in the year 2018.
A member of the family Berberidaceae; a replacement name for the previously invalidly published Mahonia sinuataAxelrod (1985), lacking holotype designation when published.
A Trochodendraceae genus. Type species C. kvacekii Manchester, Pigg & Devore (2018) from Oregon C. wehrii Manchester et al. (2018) from Washington state and British Columbia was originally described as a second species of this genus,[21] but subsequently it was transferred to the separate genus Paraconcavistylon.[22]
A flowering plant described on the basis of fossil leaves; a replacement name for the invalidly published Cussoniphyllum Velenovský (1889). Genus includes "Cussonia" partita Velenovský (1882).
A flowering plant of uncertain phylogenetic placement. Genus includes new species D. burmensis. The generic name is preoccupied by Diaphoranthus Meyen (1834); Poinar (2019) coined a replacement name Exalloanthum.[28]
A flowering plant described on the basis of fossil leaves; a replacement name for the preoccupied Diplophyllum Velenovský & Viniklář (1929). Genus includes "Inga" cottae Ettingshausen (1867), "Diplophyllum" cretaceum Velenovský & Viniklář (1929), "Hymenaea" elongata Velenovský (1884), "Hymenaea" inaequalis Velenovský (1884) and "Hymenaea" primigenia de Saporta in Velenovský (1884).
A flowering plant of uncertain phylogenetic placement. Originally described as a possible relative of members of the family Dilleniaceae; Chambers & Poinar (2023) subsequently reinterpreted it as a member of the family Proteaceae,[34] but this interpretation was rejected by Lamont & Ladd (2024).[35] Genus includes new species E. paleosum.
A flowering plant described on the basis of fossil leaves; a replacement name for the invalidly published Hederophyllum Velenovský (1889). Genus includes "Hedera" credneriifolia Velenovský (1882) and "Hedera" primordialis de Saporta (1879).
A member of the family Lythraceae. Originally described as a species of Hemitrapa, but subsequently transferred to the genus Primotrapa by Li et al. (2020).[45]
A flowering plant described on the basis of fossil wood, with a suite of features seen in several families of Malpighiales, Myrtales and Oxalidales. Genus includes new species M. waddellii.
A fossil seed with affinities to Austrobaileyales and Nymphaeales. Genus includes new species N. taylorii, N. hopewellense, N. crassum, N. virginiense and N. marylandense.
A flowering plant described on the basis of fossil leaves; a replacement name for the invalidly published Grevilleophyllum Velenovský (1889). Genus includes "Grevillea" constans Velenovský (1883).
A flowering plant with affinities to Austrobaileyales or Nymphaeales. Genus includes new species T. hopewellense, T. marylandense, T. drewriense and T. antiquum.
A phytoclast. Genus includes new species T. brevifurcatus (probably a member of Campanulaceae), T. duplihelicoidus (affinity unknown) and T. simplex (a dicotyledon of uncertain affinity).
A flowering plant of uncertain phylogenetic placement, described on the basis of fossil leaves. Genus includes "Dicotylophyllum" expansolobum Upchurch & Dilcher (1990).
A seed plant of uncertain phylogenetic placement. Interpreted as an early fossil flower by Fu et al. (2018);[128] Coiro, Doyle & Hilton (2019) considered known specimens of this plant to be more similar to conifer cones.[129] Genus includes new species N. dendrostyla.
A member of Bennettitales; a replacement name for Nilssoniopteris angustifolia Wang (1984), preoccupied by Nilssoniopteris angustifolia Doludenko and Svanidze (1969).
A study on the structure and variation of areolation patterns in leaves of Paleozoicprotosphagnaleanmosses is published by Ivanov, Maslova & Ignatov (2018).[196]
A study re-examining the evidence on the speed of growth and life cycle of the tree-like lycophytes from the Carboniferous (Pennsylvanian) coal swamps, and in particular addressing an earlier study by Boyce & DiMichele (2016),[199] is published by Thomas & Cleal (2018).[200][201]
A study on the composition of the Late Triassic flora of the American Southwest, based on palynological data from the Chinle Formation, and indicative of a floral turnover occurring in the middle Norian, is published by Baranyi et al. (2018).[203]
A study on the Middle Jurassic flora from Yorkshire (United Kingdom) as indicated by pollen and spores, and on the possible dinosaur-plant interactions in the area is published by Slater et al. (2018).[204]
A study on the spore wall structure and development in Psilophyton dawsonii is published by Noetinger, Strayer & Tomescu (2018).[206]
Lycopsidmegaspores preserved with fossil starch, probably used to attract and reward animals for megaspore dispersal, are described from the Permian of north China by Liu et al. (2018).[207]
A study on the phylogenetic relationships of extant and fossil members of Equisetales is published by Elgorriaga et al. (2018).[208]
A study on the anatomy of the Devonian fern-like plant Shougangia bella is published by Wang et al. (2018).[209]
A study on the phylogenetic relationships of a putative Triassic fern Pekinopteris, based on evaluation of specimens preserving fertile pinnae, is published by Axsmith, Skog & Pott (2018).[210]
A study on the phylogenetic relationships of extant and fossil marattialean ferns is published by Rothwell, Millay & Stockey (2018).[212]
A study on the phylogenetic relationships of members of Dipteridaceae based on data from extant and fossil taxa is published by Choo & Escapa (2018).[213]
Fossils of member of the genus Glossopteris related to the species Glossopteris communis from India are described from the Permian deposits of southeastern Gobi (Mongolia) by Naugolnykh & Uranbileg (2018).[216]
A study on the fossils of glossopterids from the Permian (Lopingian) Buckley Formation (Antarctica) will be published by DeWitt et al. (2018), who present evidence of glossopterids shedding their pollen organs during a different time of the season than Glossopteris leaves.[217]
Blomenkemper et al. (2018) report the discovery of mixed plant-fossil assemblages in Late Permian deposits on the margins of the Dead Sea in Jordan, including fossils of seed ferns, members of Bennettitales and the earliest records of conifers reported so far.[218]
A study on the phylogeny of conifers, comparing the inferred phylogenetic relationships and estimated divergence ages with the paleobotanical record, is published by Leslie et al. (2018).[219]
A study on the atmospheric carbon dioxide concentration levels in the Early Cretaceous based on data from specimens of the fossil conifer species Pseudofrenelopsis papillosa is published by Jing & Bainian (2018).[220]
A study on the phylogenetic relationships of members of Pinaceae based on data from extant and fossil taxa is published by Gernandt et al. (2018).[221]
A study on the epidermis of the leaves of the fossil pinePinus mikii and on the phylogenetic relationships of the species is published by Yamada & Yamada (2018).[222]
A study on the anatomy and phylogenetic relationships of Austrohamia acanthobractea, based on data from leafy twigs with attached pollen cones and seed cones from the Middle Jurassic Daohugou Lagerstätte (China), is published by Dong et al. (2018).[223]
Rediscovery of the holotype specimen of Weltrichia fabrei is reported by Moreau & Thévenard (2018).[224]
A study on the phylogenetic relationships of the vascular plants and the timescale of their evolution, attempting to establish when the flowering plants originated, is published by Barba-Montoya et al. (2018).[226]
Fossil assemblage including plant and vertebrate remains is described from the Turonian Ferron Sandstone Member of the Mancos Shale Formation (Utah, United States) by Jud et al. (2018), who report turtle and crocodilian remains and an ornithopodsacrum, as well as a large silicified log assigned to the genus Paraphyllanthoxylon, representing the largest known pre-Campanian flowering plant reported so far and the earliest documented occurrence of an angiosperm tree more than 1.0 m in diameter.[228]
A study on the phylogenetic relationships of extant and fossil members of Zingiberales is published by Smith et al. (2018).[229]
A study on the phylogenetic relationships of Cornales based on data from extant and fossil taxa is published by Atkinson (2018).[230]
A study on the microstructure of the fossils assigned to the genus Operculifructus, and on its implications for inferring the phylogenetic relationships of this genus, is published by Hayes et al. (2018).[231]
A study on the phylogenetic relationships of the flowering plants and Gnetales, as indicated by morphological data from extant and fossil taxa, is published by Coiro, Chomicki & Doyle (2018).[232]
A study on the lower threshold of extant palm temperature tolerance, as well as on the potential of using the presence of palm fossils to infer past climate, is published by Reichgelt, West & Greenwood (2018).[236]
A study on the human use of rainforest plant resources of prehistoric Sri Lanka, as indicated by data from phytoliths from the Fahien Rock Shelter sediments, is published by Premathilake & Hunt (2018).[237]
A study on the occurrence of bananas in the archaeological sequence at Fahien Rock Shelter (south-west Sri Lanka), as indicated by seed and leaf phytolith evidence, is published by Premathilake & Hunt (2018).[238]
A study on the macroevolutionary dynamics of extinction and adaptation of palms with megafaunal fruits in the late Cenozoic is published by Onstein et al. (2018), who interpret their findings as indicating that progressive loss of megafaunal frugivores during the late Cenozoic likely resulted in increased extinction rates of palms with megafaunal fruits.[239]
A study on the floral and fruit morphology of the early eudicot species Ranunculaecarpus quinquecarpellatus is published by Manchester et al. (2018).[240]
A study on the principal morphological characters distinguishing shade and sun leaves in modern species of Liquidambar, and on their implications for identifying leaf polymorphisms in fossil members of this genus that could otherwise be used to establish unwarranted new species, is published by Maslova et al. (2018).[241]
A study on fossil pollen of members of the group Ericales from five Eocene localities in the United Kingdom, Austria, Germany and China, aiming to describe fossil pollen types and compare them with the most similar looking pollen of modern species, is published by Hofmann (2018).[242]
A new fossil Loranthaceae pollen type (the first representative of this family in the fossil record of Africa) is described from the earliest Miocene of Saldanha Bay (South Africa) by Grímsson et al. (2018).[243]
A study on the types of fossil oak pollen grains from the Last Glacial Maximum sediments from the northern South China Sea, and on their implications for inferring regional climatic conditions in this area during the Last Glacial Maximum, is published by Dai, Hao & Mao (2018).[244]
A pistillate partial inflorescence of a member of the genus Castanopsis is described from Baltic amber by Sadowski, Hammel & Denk (2018), representing the first record of this genus from Baltic amber and the first pistillate inflorescence of Fagaceae from Eurasia reported so far.[245]
A study on factors which influenced the diversification processes and diversity dynamics of Cenozoic woody flowering plants is published by Shiono et al. (2018).[246]
A study on the nutritional value of plants grown under elevated CO2 levels, evaluating the hypothesis that constraints on sauropod diet quality were driven by Mesozoic CO2 concentration, is published by Gill et al. (2018).[248]
A study on the diversity, frequency and representation of insect damage of fossil plant specimens from the PermianLa Golondrina Formation (Argentina) is published by Cariglino (2018).[249]
Diverse gymnosperm and angiosperm fossils, displaying affinities with the flora of the Araripe Basin (Santana Formation) as well as those identified in deposits from the North America (Potomac Group), are described from the Lower CretaceousCodó Formation (Brazil) by Lindoso et al. (2018).[251]
A study on the impact of the Cenomanian-Turonian boundary event on the continental flora, as indicated by spore-pollen fossil record, is published by Heimhofer et al. (2018).[252]
Grimaldiet al. (2018) report biological inclusions (fungi, plants, arachnids and insects) in amber from the PaleogeneChickaloon Formation of Alaska, representing the northernmost deposit of fossiliferous amber from the Cenozoic.[254]
Organically preserved plant fossils, including leaves with cuticular preservation, are described from the PaleogeneLigorio Márquez Formation (Argentina) by Carpenter, Iglesias & Wilf (2018).[255]
A study on changes in Eocene plant diversity and floristic composition at Messel (Germany) is published by Lenz & Wilde (2018).[256]
An amber layer is reported from the lower part of the Dingqing Formation (late Oligocene) in Lunpola of central Tibet (representing the first record of amber from Tibet) by Wang et al. (2018), who interpret this amber as derived from dipterocarp trees, and who interpret the amber layer as remains of the northernmost dipterocarp forest discovered so far.[257]
A study on CO2 concentrations during the early Miocene, as indicated by stomatal characteristics of fossil leaves from a late early Miocene assemblage from Panama and a leaf gas-exchange model, is published by Londoño et al. (2018).[258]
A study evaluating when the plants using the C4 photosynthetic pathway initially expanded on the Australian continent, as indicated by carbon isotope ratios of plant waxes from scientific ocean drilling sediments off north-western Australia, is published by Andrae et al. (2018).[259]
A study on the role of fire during the expansion of C4 grassland ecosystems in the Mio-Pliocene, based on data from molecular proxies from paleosol samples of the Siwalik Group (Pakistan), is published by Karp, Behrensmeyer & Freeman (2018).[260]
A study on the macroevolutionary responses of noctuid moths from the group Sesamiina and their associated host-grasses to environmental changes during the Neogene is published by Kergoat et al. (2018).[261]
A study on the abundance of the C3 and C4 grasses in the central interior of southern Africa in the Early Pleistocene, as indicated by enamel stable carbon and oxygen isotope data, associated faunal abundance and phytolith evidence from the site of Wonderwerk Cave (South Africa), is published by Ecker et al. (2018).[262]
A study on the changes of vegetation in the temperate zone of Asia during an interval containing the Mid-Pleistocene Transition, ~1.2–0.7 million years ago, as indicated by pollen data from a drilling core from the North China Plain, as well as on their effect on the large mammal fauna is published by Xinying et al. (2018).[263]
A study on the distance of seed dispersal by extant and extinct mammalian frugivores and on the impact of the extinction of Pleistocene megafauna on seed dispersal is published by Pires et al. (2018).[265]
A study on the seeds preserved in moacoprolites is published by Carpenter et al. (2018), who question the hypothesis that some of the largest-seeded plants of New Zealand were dispersed by moas.[267]
A study on pollen recovered from hyaena coprolites from Vanguard Cave (Gibraltar), and on its implications for reconstructing the vegetation landscapes in the environment inhabited by southern Iberian Neanderthals during the MIS 3, is published by Carrión et al. (2018).[269]
A study on the inner structure of cuticles and carbonaceous compressions of Early Jurassic plants from Argentinian Patagonia, using Focused Ion Beam Scanning Electron Microscopy, is published by Sender et al. (2018).[270]
A study on the changing ecology of woodland vegetation of southern mainland Greece during the late Pleistocene and the early-mid Holocene, and on the ecological context of the first introduction of crop domesticates in the southern Greek mainland, as indicated by data from carbonized fuel wood waste from the Franchthi Cave, is published by Asouti, Ntinou & Kabukcu (2018).[271]
Evidence of plant domestication and food production from the early and middle Holocene site of Teotonio (southwestern Amazonia, Brazil) is presented by Watling et al. (2018).[272]
A study on changes in plant pathogen communities (fungi and oomycetes) in response to changing climate during late Quaternary, as indicated by data from solidified deposits of rodent coprolites and nesting material from the central Atacama Desert spanning the last ca. 49,000 years, is published by Wood et al. (2018).[273]
A study on the timing of the origination of the East Asian flora (including Sino-Japanese Flora Metasequoia Flora and Sino-Himalayan Rhododendron Flora), as indicated by molecular and fossil data, is published by Chen et al. (2018).[274]
References
^ abcdAlexander B. Doweld (2018). "New names of fossil Berberidaceae". Phytotaxa. 351 (1): 72–80. doi:10.11646/hytotaxa.351.1.6.
^ abcdeMitsuru Arai; Dimas Dias-Brito (2018). "The Ibaté paleolake in SE Brazil: Record of an exceptional late Santonian palynoflora with multiple significance (chronostratigraphy, paleoecology and paleophytogeography)". Cretaceous Research. 84: 264–285. Bibcode:2018CrRes..84..264A. doi:10.1016/j.cretres.2017.11.014. hdl:11449/175605.
^ abcdefghijklmnopqrstAlexander B. Doweld (2018). "Palaeoflora Europaea: Notulae Systematicae ad Palaeofloram Europaeam spectantes I. New names of fossil magnoliophytes of the European Tertiary. I. Miscellaneous families". Phytotaxa. 379 (1): 78–94. doi:10.11646/phytotaxa.379.1.8. S2CID92221463.
^ abMaria G. Moiseeva; Tatiana M. Kodrul; Alexei B. Herman (2018). "Early Paleogene Boguchan flora of the Amur Region (Russian Far East): Composition, age and palaeoclimatic implications". Review of Palaeobotany and Palynology. 253: 15–36. Bibcode:2018RPaPa.253...15M. doi:10.1016/j.revpalbo.2018.03.003. S2CID134765560.
^Eliana Moya; Mariana Brea (2018). "First Pleistocene record of fossil wood of Bignoniaceae in the Americas and a comparison with the extant Tabebuia alliance and Tecomeae". Botanical Journal of the Linnean Society. 187 (2): 303–318. doi:10.1093/botlinnean/boy019. hdl:11336/91302.
^Jun-Ling Dong; Bai-Nian Sun; Teng Mao; Chun-Hui Liu; Xue-Lian Wang; Ming-Xuan Sun; Fu-Jun Ma; Qiu-Jun Wang (2018). "The occurrence of Burretiodendron from the Oligocene of South China and its geographic analysis". Palaeogeography, Palaeoclimatology, Palaeoecology. 512: 95–105. Bibcode:2018PPP...512...95D. doi:10.1016/j.palaeo.2017.07.004. S2CID133617973.
^Hua-Sheng Huang; Tao Su; Zhe-Kun Zhou (2018). "Fossil leaves of Buxus (Buxaceae) from the Upper Pliocene of Yunnan, SW China". Palaeoworld. 27 (2): 271–281. doi:10.1016/j.palwor.2017.12.003. S2CID134796110.
^Meng Han; Steven R. Manchester; Yan Wu; Jianhua Jin; Cheng Quan (2018). "Fossil fruits of Canarium (Burseraceae) from Eastern Asia and their implications for phytogeographical history". Journal of Systematic Palaeontology. 16 (10): 841–852. doi:10.1080/14772019.2017.1349624. S2CID90812518.
^Cristina I. Nunes; Roberto R. Pujana; Ignacio H. Escapa; María A. Gandolfo; N. Rubén Cúneo (2018). "A new species of Carlquistoxylon from the Early Cretaceous of Patagonia (Chubut province, Argentina): the oldest record of angiosperm wood from South America". IAWA Journal. 39 (4): 406–426. doi:10.1163/22941932-20170206. hdl:11336/117578. S2CID92383900.
^ abcLuliang Huang; Jianhua Jin; Cheng Quan; Alexei A. Oskolski (2018). "Mummified fossil woods of Fagaceae from the upper Oligocene of Guangxi, South China". Journal of Asian Earth Sciences. 152: 39–51. Bibcode:2018JAESc.152...39H. doi:10.1016/j.jseaes.2017.11.029.
^ abGeorge Poinar, Jr. (2018). "Mid-Cretaceous angiosperm flowers in Myanmar amber". In Beatrice Welch; Micheal Wilkerson (eds.). Recent advances in plant research. Nova Science Publishers, Incorporated. pp. 187–218. ISBN978-1-53614-170-2.
^Anumeha Shukla; R.C. Mehrotra (2018). "A new fossil wood from the highly diverse early Eocene equatorial forest of Gujarat (western India)". Palaeoworld. 27 (3): 392–398. doi:10.1016/j.palwor.2018.01.003. S2CID134657292.
^ abcClément Coiffard; Barbara A. R. Mohr (2018). "Cretaceous tropical Alismatales in Africa: diversity, climate and evolution". Botanical Journal of the Linnean Society. 188 (2): 117–131. doi:10.1093/botlinnean/boy045.
^ abSteven Manchester; Kathleen B. Pigg; Zlatko Kvaček; Melanie L. Devore; Richard M. Dillhoff (2018). "Newly recognized diversity in Trochodendraceae from the Eocene of western North America". International Journal of Plant Sciences. 179 (8): 663–676. doi:10.1086/699282. S2CID92201595.
^ abItzel Guzmán-Vázquez; Laura Calvillo-Canadell; Francisco Sánchez-Beristain (2018). "Leaves of Menispermaceae and Dioscoreaceae from the Olmos Formation (Upper Cretaceous) from the state of Coahuila, Northern Mexico". Review of Palaeobotany and Palynology. 258: 73–82. Bibcode:2018RPaPa.258...73G. doi:10.1016/j.revpalbo.2018.06.014. S2CID133808069.
^ abVandana Prasad; Anjum Farooqui; Srikanta Murthy; Omprakash S. Sarate; Sunil Bajpai (2018). "Palynological assemblage from the Deccan Volcanic Province, central India: Insights into early history of angiosperms and the terminal Cretaceous paleogeography of peninsular India". Cretaceous Research. 86: 186–198. Bibcode:2018CrRes..86..186P. doi:10.1016/j.cretres.2018.03.004. S2CID134729292.
^ abcBrian A. Atkinson; Ruth A. Stockey; Gar W. Rothwell (2018). "Tracking the initial diversification of asterids: anatomically preserved cornalean fruits from the early Coniacian (Late Cretaceous) of western North America". International Journal of Plant Sciences. 179 (1): 21–35. doi:10.1086/695339. S2CID91138180.
^Byron B. Lamont; Philip G. Ladd (2024). "Endobeuthos paleosum in 99-million-year-old amber does not belong to the Proteaceae". Journal of the Botanical Research Institute of Texas. 18 (1): 143–147. doi:10.17348/jbrit.v18.i1.1343.
^Qijia Li; Yusheng (Christopher) Liu; Jianhua Jin; Cheng Quan (2018). "Late Oligocene Fissistigma (Annonaceae) leaves from Guangxi, low-latitude China and its paleoecological implications". Review of Palaeobotany and Palynology. 259: 39–47. Bibcode:2018RPaPa.259...39L. doi:10.1016/j.revpalbo.2018.09.005. S2CID134325932.
^Ye-Ming Cheng; Xiao-Nan Yang; Zhe-Feng He; Bing Mao; Ya-Fang Yin (2018). "Early Miocene angiosperm woods from Sihong in the Jiangsu Province, Eastern China". IAWA Journal. 39 (1): 125–142. doi:10.1163/22941932-20170189.
^Mahasin Ali Khan; Meghma Bera; Robert A.Spicer; Teresa E.V. Spicer; Subir Bera (2018). "Evidence of simultaneous occurrence of tylosis formation and fungal interaction in a late Cenozoic angiosperm from the eastern Himalaya". Review of Palaeobotany and Palynology. 259: 171–184. Bibcode:2018RPaPa.259..171K. doi:10.1016/j.revpalbo.2018.10.004. S2CID135278929.
^Maria de Jesus Hernandez-Hernández; Carlos Castañeda-Posadas (2018). "Gouania miocenica sp. nov. (Rhamnaceae), a Miocene fossil from Chiapas, México and paleobiological involvement". Journal of South American Earth Sciences. 85: 1–5. Bibcode:2018JSAES..85....1H. doi:10.1016/j.jsames.2018.04.018. S2CID134428644.
^Tao Su; Shu-Feng Li; He Tang; Yong-Jiang Huang; Shi-Hu Li; Cheng-Long Deng; Zhe-Kun Zhou (2018). "Hemitrapa Miki (Lythraceae) from the earliest Oligocene of southeastern Qinghai-Tibetan Plateau and its phytogeographic implications". Review of Palaeobotany and Palynology. 257: 57–63. Bibcode:2018RPaPa.257...57S. doi:10.1016/j.revpalbo.2018.06.001. S2CID135057777.
^ abcEmilio Estrada-Ruiz; Elisabeth A. Wheeler; Garland R. Upchurch Jr.; Greg H. Mack (2018). "Late Cretaceous angiosperm woods from the McRae Formation, south-central New Mexico, USA: Part 2". International Journal of Plant Sciences. 179 (2): 136–150. doi:10.1086/695503. S2CID90756137.
^Junling Dong; Bainian Sun; Teng Mao; Defei Yan; Chunhui Liu; Zixi Wang; Peihong Jin (2018). "Liquidambar (Altingiaceae) and associated insect herbivory from the Miocene of southeastern China". Palaeogeography, Palaeoclimatology, Palaeoecology. 497: 11–24. Bibcode:2018PPP...497...11D. doi:10.1016/j.palaeo.2018.02.001.
^Lu-Liang Huang; Jin Sun; Jian-Hua Jin; Cheng Quan; Alexei A. Oskolski (2018). "Litseoxylon gen. nov. (Lauraceae): The most ancient fossil angiosperm wood with helical thickenings from southeastern Asia". Review of Palaeobotany and Palynology. 258: 223–233. Bibcode:2018RPaPa.258..223H. doi:10.1016/j.revpalbo.2018.08.006. S2CID134584129.
^Camila Martínez (2018). "Dalbergieae (Fabaceae) samara fruits from the Late Eocene of Colombia". International Journal of Plant Sciences. 179 (7): 541–553. doi:10.1086/698937. S2CID92370507.
^ abMaría Jimena Franco (2018). "Small Celastraceae and Polygonaceae twigs from the Upper Cenozoic (Ituzaingó Formation) of the La Plata Basin, Argentina". Historical Biology: An International Journal of Paleobiology. 30 (5): 646–660. doi:10.1080/08912963.2017.1313840. hdl:11336/21859. S2CID133509866.
^Else Marie Friis; Peter R. Crane; Kaj R. Pedersen (2018). "Fossil seeds with affinities to Austrobaileyales and Nymphaeales from the Early Cretaceous (early to middle Albian) of Virginia and Maryland, USA: new evidence for extensive extinction near the base of the angiosperm tree". In Michael Krings; Carla J. Harper; Néstor Rubén Cúneo; Gar W. Rothwell (eds.). Transformative paleobotany. Papers to commemorate the life and legacy of Thomas N. Taylor. Academic Press. pp. 417–435. doi:10.1016/B978-0-12-813012-4.00017-6. ISBN978-01-281-3012-4.
^Yunfa Chen; Hongshan Wang; Yongqing Liufu; Qian Hu; Qiongyao Fu; Zhiming Xie (2018). "A new species of Palaeocarya (Juglandaceae) from the Ningming Basin in Guangxi, South China". Phytotaxa. 367 (1): 55–62. doi:10.11646/phytotaxa.367.1.6. S2CID91774942.
^Kathleen B. Pigg; Finley A. Bryan; Melanie L. DeVore (2018). "Paleoallium billgenseli gen. et sp. nov.: fossil monocot remains from the latest Early Eocene Republic Flora, northeastern Washington State, USA". International Journal of Plant Sciences. 179 (6): 477–486. doi:10.1086/697898. S2CID91055581.
^ abcSamar Nour-El-Deen; Romain Thomas; Wagieh El-Saadawi (2018). "First record of fossil Trachycarpeae in Africa: three new species of Palmoxylon from the Oligocene (Rupelian) Gebel Qatrani Formation, Fayum, Egypt". Journal of Systematic Palaeontology. 16 (9): 741–766. doi:10.1080/14772019.2017.1343258. S2CID134641364.
^ abÜnal Akkemik; Gökhan Atıcı; Imogen Poole; Mehmet Çobankaya (2018). "Three new silicified woods from a newly discovered earliest Miocene forest site in the Haymana Basin (Ankara, Turkey)". Review of Palaeobotany and Palynology. 254: 49–64. Bibcode:2018RPaPa.254...49A. doi:10.1016/j.revpalbo.2018.04.012. S2CID134850974.
^Dmitry D. Sokoloff; Michael S. Ignatov; Margarita V. Remizowa; Maxim S. Nuraliev; Vladimir Blagoderov; Amin Garbout; Evgeny E. Perkovsky (2018). "Staminate flower of Prunuss. l. (Rosaceae) from Eocene Rovno amber (Ukraine)". Journal of Plant Research. 131 (6): 925–943. doi:10.1007/s10265-018-1057-2. PMID30032395. S2CID51708343.
^Friðgeir Grímsson; Guido W. Grimm; Alastair J. Potts; Reinhard Zetter; Susanne S. Renner (2018). "A Winteraceae pollen tetrad from the early Paleocene of western Greenland, and the fossil record of Winteraceae in Laurasia and Gondwana". Journal of Biogeography. 45 (3): 567–581. doi:10.1111/jbi.13154. S2CID91077162.
^John G. Conran; Elizabeth M. Kennedy; Jennifer M. Bannister (2018). "Early Eocene Ripogonaceae leaf macrofossils from New Zealand". Australian Systematic Botany. 31 (1): 8–15. doi:10.1071/SB17016. S2CID90024792.
^A.L. Hernández-Damián; S.L. Gómez-Acevedo; S.R.S. Cevallos-Ferriz (2018). "Fossil flower of Salacia lombardii sp. nov. (Salacioideae-Celastraceae) preserved in amber from Simojovel de Allende, Mexico". Review of Palaeobotany and Palynology. 252: 1–9. Bibcode:2018RPaPa.252....1H. doi:10.1016/j.revpalbo.2018.02.003.
^Sandip More; Rajarshi Rit; Mahasin Ali Khan; Dipak Kumar Paruya; Suchana Taral; Tapan Chakraborty; Subir Bera (2018). "Record of leaf and pollen cf. Sloanea (Elaeocarpaceae) from the Middle Siwalik of Darjeeling sub-Himalaya, India and its palaeobiogeographic implications". Journal of the Geological Society of India. 91 (3): 301–306. doi:10.1007/s12594-018-0854-5. S2CID134939533.
^Yongjiang Huang; Arata Momohara; Yuqing Wang (2018). "Selective extinction within a Tertiary relict genus in the Japanese Pleistocene explained by climate cooling and species-specific cold tolerance". Review of Palaeobotany and Palynology. 258: 1–12. Bibcode:2018RPaPa.258....1H. doi:10.1016/j.revpalbo.2018.06.009. S2CID134792773.
^ abcHan, M.; Manchester, S.; Fu, Q.-Y.; Jin, J.-H.; Quan, C. (2018). "Paleogene fossil fruits of Stephania (Menispermaceae) from North America and East Asia". Journal of Systematics and Evolution. 56 (2): 81–91. doi:10.1111/jse.12288. S2CID90749898.
^Manchester, S.R. (1994). "Fruits and Seeds of the Middle Eocene Nut Beds Flora, Clarno Formation, Oregon". Palaeontographica Americana. 58: 30–31.
^ abQiu-Yue Zhang; Jian Huang; Lin-Bo Jia; Tao Su; Zhe-Kun Zhou; Yao-Wu Xing (2018). "Miocene Ulmus fossil fruits from Southwest China and their evolutionary and biogeographic implications". Review of Palaeobotany and Palynology. 259: 198–206. Bibcode:2018RPaPa.259..198Z. doi:10.1016/j.revpalbo.2018.10.007. S2CID135184883.
^N. I. Blokhina; O. V. Bondarenko (2018). "Fossil wood of Ulmus priamurica sp. nov. (Ulmaceae) from the Miocene of the Erkovetskii Brown Coal Field, Amur Region, Russia". Paleontological Journal. 52 (2): 208–218. doi:10.1134/S003103011802003X. S2CID90347236.
^Xiao-Qing Liang; Ping Lu; Jian-Wei Zhang; Tao Su; Zhe-Kun Zhou (2018). "First fossils of Zygogynum from the Middle Miocene of Central Yunnan, Southwest China, and their palaeobiogeographic significance". Palaeoworld. 27 (3): 399–409. doi:10.1016/j.palwor.2018.05.003. S2CID135342481.
^M. Philippe; M. Rioult; J.-Ph. Rioult; F. Thévenard (2018). "A reappraisal of Lignier's Mesozoic fossil wood collection: Ages, nomenclature and taxonomy". Review of Palaeobotany and Palynology. 252: 10–19. Bibcode:2018RPaPa.252...10P. doi:10.1016/j.revpalbo.2018.02.001.
^ abcdStănilă Iamandei; Eugenia Iamandei; Eugen Grădinaru (2018). "Contributions to the study of the Early Jurassic petrified forest of Holbav and Cristian areas (Brașov region, South Carpathians, Romania). 1st part". Acta Palaeontologica Romaniae. 14 (2): 3–34.
^Wen-Na Ding; Lutz Kunzmann; Tao Su; Jian Huang; Zhe-Kun Zhou (2018). "A new fossil species of Cryptomeria (Cupressaceae) from the Rupelian of the Lühe Basin, Yunnan, East Asia: Implications for palaeobiogeography and palaeoecology". Review of Palaeobotany and Palynology. 248: 41–51. Bibcode:2018RPaPa.248...41D. doi:10.1016/j.revpalbo.2017.09.003.
^Tatiana Kodrul; Natalia Gordenko; Aleksandra Sokolova; Natalia Maslova; Xinkai Wu; Jianhua Jin (2018). "A new Oligocene species of Cunninghamia R. Brown ex Richard et A. Richard (Cupressaceae) from the Maoming Basin, South China". Review of Palaeobotany and Palynology. 258: 234–247. Bibcode:2018RPaPa.258..234K. doi:10.1016/j.revpalbo.2018.09.003. S2CID134577533.
^Pei-Hong Jin; Jun-Ling Dong; Zi-Xi Wang; Xiu-Cai Yuan; Yi-Fan Hua; Bao-Xia Du; Bai-Nian Sun (2018). "A new species of Elatides from the Lower Cretaceous in Shandong province, Eastern China and its geographic significance". Cretaceous Research. 85: 109–127. Bibcode:2018CrRes..85..109J. doi:10.1016/j.cretres.2017.11.022.
^ abAmit K. Ghosh; Ratan Kar; Reshmi Chatterjee; Arindam Chakraborty; Jayasri Banerji (2018). "Two new conifers from the Early Cretaceous of the Rajmahal Basin, India: implications on palaeoecology and phytogeography". Ameghiniana. 55 (4): 437–450. doi:10.5710/AMGH.17.02.2018.3124. S2CID134437542.
^Ana Andruchow-Colombo; Ignacio H. Escapa; Raymond J. Carpenter; Robert S. Hill; Ari Iglesias; Ana M. Abarzua; Peter Wilf (2018). "Oldest record of the scale-leaved clade of Podocarpaceae, early Paleocene of Patagonia, Argentina". Alcheringa. 43: 127–145. doi:10.1080/03115518.2018.1517222. S2CID133852107.
^Ruth A. Stockey; Nicholas J. P. Wiebe; Brian A. Atkinson; Gar W. Rothwell (2018). "Cupressaceous pollen cones from the Early Cretaceous of Vancouver Island, British Columbia: Morinostrobus holbergensis gen. et sp. nov". International Journal of Plant Sciences. 179 (5): 402–414. doi:10.1086/697728. S2CID89890930.
^Mahasin Ali Khan; Subir Bera (2018). "Pinus daflaensis (Pinaceae), a replacement name for P. arunachalensis Khan & Bera". Phytotaxa. 334 (2): 200. doi:10.11646/phytotaxa.334.2.9.
^ abcdeAlexander B. Doweld (2018). "New names of fossil Pinus and Pinuspollenites (Pinaceae) of Northern Eurasia". The Journal of Japanese Botany. 93 (3): 215–219.
^Wenlong He; Liang Xiao; Xiangchuan Li; Shuangxing Guo (2018). "An ancient example of Platycladus (Cupressceae) from the early Miocene of northern China: origin and biogeographical implications". Historical Biology: An International Journal of Paleobiology. 30 (8): 1123–1131. doi:10.1080/08912963.2017.1339038. S2CID89824036.
^Jiří Kvaček; Eduardo Barrón; Zuzana Heřmanová; Mário Miguel Mendes; Jakub Karch; Jan Žemlička; Jan Dudák (2018). "Araucarian conifer from late Albian amber of northern Spain". Papers in Palaeontology. 4 (4): 643–656. doi:10.1002/spp2.1223. S2CID134837045.
^Xiao Tan; David L. Dilcher; Hongshan Wang; Yi Zhang; Yu-Ling Na; Tao Li; Yun-Feng Li; Chun-Lin Sun (2018). "Yanliaoa, an extinct genus of Cupressaceae s. l. from the Middle Jurassic, northeastern China". Palaeoworld. 27 (3): 360–373. doi:10.1016/j.palwor.2018.03.001. S2CID134801054.
^Le Liu; De-Ming Wang; Mei-Cen Meng; Pu Huang; Jin-Zhuang Xue (2018). "A new seed plant with multi-ovulate cupules from the Upper Devonian of South China". Review of Palaeobotany and Palynology. 249: 80–86. Bibcode:2018RPaPa.249...80L. doi:10.1016/j.revpalbo.2017.11.006.
^Yun-Feng Li; Chun-Lin Sun; Hongshan Wang; David L. Dilcher; Xiao Tan; Tao Li; Yu-Ling Na (2018). "First record of Eretmophyllum (Ginkgoales) with well-preserved cuticle from the Middle Jurassic of the Ordos Basin, Inner Mongolia, China". Palaeoworld. 27 (2): 188–201. doi:10.1016/j.palwor.2017.09.002. S2CID135110777.
^ abcChun-Lin Sun; Xiao Tan; David L. Dilcher; Hongshan Wang; Yu-Ling Na; Tao Li; Yun-Feng Li (2018). "Middle Jurassic Ginkgo leaves from the Daohugou area, Inner Mongolia, China and their implication for palaeo-CO2 reconstruction". Palaeoworld. 27 (4): 467–481. doi:10.1016/j.palwor.2018.09.005. S2CID134358537.
^Andrey O. Frolov; Irina M. Mashchuk (2022). "New Discoveries and New Combinations of the Fossil-genus Ginkgoites Seward (Ginkgoales) from the Lower and Middle Jurassic of East Siberia (Russia)". Phytotaxa. 567 (1): 49–60. doi:10.11646/phytotaxa.567.1.4. S2CID252650745.
^ abZixi Wang; Bainian Sun; Fankai Sun; Conghui Xiong; Yingquan Chen; Xuelian Wang (2018). "Microstructure and significance of cordaitean reproductive organs from the lower Permian of Gansu, Northwest China". Journal of Asian Earth Sciences. 158: 49–64. Bibcode:2018JAESc.158...49W. doi:10.1016/j.jseaes.2018.02.016. S2CID134097850.
^Ana María Zavattieri; Pedro Raúl Gutiérrez; Miguel Ezpeleta (2018). "Gymnosperm pollen grains from the La Veteada Formation (Lopingian), Paganzo Basin, Argentina: biostratigraphic and palaeoecological implications". Alcheringa: An Australasian Journal of Palaeontology. 42 (2): 276–299. doi:10.1080/03115518.2017.1410571. hdl:11336/94041. S2CID133757522.
^ abYi Zhao; Shenghui Deng; Ping Shang; Qin Leng; Yuanzheng Lu; Guobin Fu; Xueying Ma (2018). "Two new species of Nilssoniopteris (Bennettitales) from the Middle Jurassic of Sandaoling, Turpan-Hami Basin, Xinjiang, NW China". Journal of Paleontology. 92 (4): 525–545. Bibcode:2018JPal...92..525Z. doi:10.1017/jpa.2017.133. S2CID134658701.
^Yi Zhao; Yuanzheng Lu; Ping Shang; Shenghui Deng; Xunlian Wang (2018). "An amended species, Nilssoniopteris neimenguensis nom. nov., from the Lower Jurassic of the Xilinhot Basin, Inner Mongolia, northern China, with a reexamination of Nilssoniopteris species". Review of Palaeobotany and Palynology. 255: 22–34. Bibcode:2018RPaPa.255...22Z. doi:10.1016/j.revpalbo.2018.04.013. S2CID134961715.
^A. O. Frolov; I. M. Mashchuk (2018). "A new species of the genus Phoenicopsis (Leptostrobales) from the Middle Jurassic of the Irkutsk Basin (Eastern Siberia)". Paleontological Journal. 52 (4): 463–468. doi:10.1134/S0031030118040068. S2CID92483140.
^ abcGongle Shi; Fabiany Herrera; Patrick S. Herendeen; Andrew B. Leslie; Niiden Ichinnorov; Masamichi Takahashi; Peter R. Crane (2018). "Leaves of Podozamites and Pseudotorellia from the Early Cretaceous of Mongolia: stomatal patterns and implications for relationships". Journal of Systematic Palaeontology. 16 (2): 111–137. doi:10.1080/14772019.2016.1274343. S2CID90523531.
^Bárbara Cariglino; Mariana Monti; Ana María Zavattieri (2018). "A Middle Triassic macroflora from southwestern Gondwana (Mendoza, Argentina) with typical Northern Hemisphere elements: Biostratigraphic, palaeogeographic and palaeoenvironmental implications". Review of Palaeobotany and Palynology. 257: 1–18. Bibcode:2018RPaPa.257....1C. doi:10.1016/j.revpalbo.2018.06.004. S2CID134353650.
^Tao Yang; Fei Liang; Shu-chong Bai; Xiao-rong Guo (2018). "New discovery of Solenites (Czekanowskialean) from Upper Triassic Haojiagou Formation in Urumqi, Xinjiang". Global Geology. 37 (1): 1–8. doi:10.3969/j.issn.1004-5589.2018.01.001.
^Giuseppa Forte; Evelyn Kustatscher; Johanna H.A. van Konijnenburg-van Cittert; Hans Kerp (2018). "Sphenopterid diversity in the Kungurian of Tregiovo (Trento, NE-Italy)". Review of Palaeobotany and Palynology. 252: 64–76. Bibcode:2018RPaPa.252...64F. doi:10.1016/j.revpalbo.2018.02.006.
^Pedro Correia; Zbynĕk Šimůnek; Artur A. Sá; Deolinda Flores (2018). "A new Late Pennsylvanian floral assemblage from the Douro Basin, Portugal". Geological Journal. 53 (6): 2507–2531. doi:10.1002/gj.3086. S2CID134475039.
^ abcUlla Kaasalainen; Jochen Heinrichs; Matthew A. M. Renner; Lars Hedenäs; Alfons Schäfer-Verwimp; Gaik Ee Lee; Michael S. Ignatov; Jouko Rikkinen; Alexander R. Schmidt (2018). "A Caribbean epiphyte community preserved in Miocene Dominican amber". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 107 (2–3): 321–331. doi:10.1017/S175569101700010X. hdl:10138/234078. S2CID134335842.
^Fayao Chen; Xiao Shi; Jianxin Yu; Hongfei Chi; Jun Zhu; Hui Li; Cheng Huang (2018). "Permineralized calamitean axes from the Upper Permian of Xinjiang, Northwest China and its paleoecological implication". Journal of Earth Science. 29 (2): 237–244. doi:10.1007/s12583-017-0941-3. S2CID133735122.
^Facundo De Benedetti; María del C. Zamaloa; María A. Gandolfo; Néstor Rubén Cúneo (2018). "Heterosporous ferns From Patagonia: the case of Azolla". In Michael Krings; Carla J. Harper; Néstor Rubén Cúneo; Gar W. Rothwell (eds.). Transformative paleobotany. Papers to commemorate the life and legacy of Thomas N. Taylor. Academic Press. pp. 361–373. doi:10.1016/B978-0-12-813012-4.00015-2. ISBN978-01-281-3012-4.
^Jochen Heinrichs; Alfons Schäfer-Verwimp; Matthew A. M. Renner; Kathrin Feldberg (2018). "Cheilolejeunea lamyi sp. nov., a fossil Lejeuneaceae from Miocene Dominican amber". Cryptogamie, Bryologie. 39 (2): 155–161. doi:10.7872/cryb/v39.iss2.2018.155. S2CID90214270.
^Milan Libertín; Jiří Kvaček; Jiří Bek; Viktor Žárský; Petr Štorch (2018). "Sporophytes of polysporangiate land plants from the early Silurian period may have been photosynthetically autonomous". Nature Plants. 4 (5): 269–271. doi:10.1038/s41477-018-0140-y. PMID29725100. S2CID19151297.
^Jerald B. Pinson; Steven R. Manchester; Emily B. Sessa (2018). "Culcita remberi sp. nov., an understory fern of Cyatheales from the Miocene of northern Idaho". International Journal of Plant Sciences. 179 (8): 635–639. doi:10.1086/698938. S2CID51998343.
^Christian Pott; Johannes M. Bouchal; Thereis Y.S. Choo; Rihab Yousif; Benjamin Bomfleur (2018). "Ferns and fern allies from the Carnian (Upper Triassic) of Lunz am See, Lower Austria: A melting pot of Mesozoic fern vegetation". Palaeontographica Abteilung B. 297 (1–6): 1–101. Bibcode:2018PalAB.297....1P. doi:10.1127/palb/2018/0059.
^Kelly C. Pfeiler; Alexandru M. F. Tomescu (2018). "An Early Devonian permineralized rhyniopsid from the Battery Point Formation of Gaspé (Canada)". Botanical Journal of the Linnean Society. 187 (2): 292–302. doi:10.1093/botlinnean/boy011.
^Jennifer L. Morris; Dianne Edwards; John B. Richardson (2018). "The advantages and frustrations of a plant Lagerstätte as illustrated by a new taxon from the Lower Devonian of the Welsh Borderland, UK". In Michael Krings; Carla J. Harper; Néstor Rubén Cúneo; Gar W. Rothwell (eds.). Transformative paleobotany. Papers to commemorate the life and legacy of Thomas N. Taylor. Academic Press. pp. 49–67. doi:10.1016/B978-0-12-813012-4.00004-8. ISBN978-01-281-3012-4.
^Gar W. Rothwell; Michael A. Millay; Ruth A. Stockey (2018). "Escapia gen. nov.: morphological evolution, paleogeographic diversification, and the environmental distribution of marattialean ferns through time". In Michael Krings; Carla J. Harper; Néstor Rubén Cúneo; Gar W. Rothwell (eds.). Transformative paleobotany. Papers to commemorate the life and legacy of Thomas N. Taylor. Academic Press. pp. 271–360. doi:10.1016/B978-0-12-813012-4.00014-0. ISBN978-01-281-3012-4.
^Ioan I. Bucur; Kamal Haji Karim; Hyam Daoud; Bruno Granier; Polla Azad Khanaqa (2018). "A new organ-species dasycladalean green alga from Darbandikhan, Kurdistan, Iraq". Arabian Journal of Geosciences. 11 (17): Article 484. doi:10.1007/s12517-018-3840-8. S2CID134502574.
^Kathrin Feldberg; Alina S. Müller; Alfons Schäfer-Verwimp; Matt von Konrat; Alexander R. Schmidt; Jochen Heinrichs (2018). "Frullania grabenhorstii sp. nov., a fossil liverwort (Jungermanniopsida: Frullaniaceae) with perianth from Bitterfeld amber". Bryophyte Diversity and Evolution. 40 (2): 91–103. doi:10.11646/bde.40.2.7. S2CID92419804.
^Yuriy S. Mamontov; Michael S. Ignatov; Evgeny E. Perkovsky (2018). "Hepatics from Rovno amber (Ukraine), 7. Frullania zerovii, sp. nov". Nova Hedwigia. 106 (1–2): 103–113. doi:10.1127/nova_hedwigia/2017/0446.
^Tomoyuki Katagiri (2018). "Geocalyx heinrichsii sp. nov., the first representative of Geocalycaceae (Jungermanniales, Marchantiophyta) in Baltic amber". Bryophyte Diversity and Evolution. 40 (2): 113–117. doi:10.11646/bde.40.2.9. S2CID92217722.
^Ning Tian; Yong-Dong Wang; Wu Zhang; Shao-Lin Zheng; Zhi-Peng Zhu; Zhong-Jian Liu (2018). "Permineralized osmundaceous and gleicheniaceous ferns from the Jurassic of Inner Mongolia, NE China". Palaeobiodiversity and Palaeoenvironments. 98 (1): 165–176. doi:10.1007/s12549-017-0313-0. S2CID134149095.
^Ye-Ming Cheng; Xiao-Nan Yang (2018). "A new tree fern stem, Heilongjiangcaulis keshanensis gen. et sp. nov., from the Cretaceous of the Songliao Basin, Northeast China: a representative of early Cyatheaceae". Historical Biology: An International Journal of Paleobiology. 30 (4): 518–530. doi:10.1080/08912963.2017.1301445. S2CID90771901.
^Ledis Regalado; Alexander R. Schmidt; Michael Krings; Julia Bechteler; Harald Schneider; Jochen Heinrichs (2018). "Fossil evidence of eupolypod ferns in the mid-Cretaceous of Myanmar". Plant Systematics and Evolution. 304 (1): 1–13. doi:10.1007/s00606-017-1439-2. S2CID21617872.
^ abHeinrich Winterscheid; Zlatko Kvaček; Jiří Váña; Michael S. Ignatov (2018). "Systematic-taxonomic revision of the flora from the late Oligocene Fossillagerstätte Rott near Bonn (Germany). Part 1: Introduction; Bryidae, Polypodiidae, and Pinidae". Palaeontographica Abteilung B. 297 (1–6): 103–141. Bibcode:2018PalAB.297..103W. doi:10.1127/palb/2018/0058. S2CID134350523.
^Bruno Granier (2018). "A new and unique bodyplan in fossil Bryopsidales, with description of Jaffrezocodium bipennatus n. gen., n. sp., an ( ?) Albian-Cenomanian calcareous green alga". Cretaceous Research. 85: 207–213. Bibcode:2018CrRes..85..207G. doi:10.1016/j.cretres.2018.01.011.
^Jean Galtier; Carla J. Harper; Ronny Rößler; Evelyn Kustatscher; Michael Krings (2018). "Enigmatic, structurally preserved stems from the Triassic of Central Europe: a fern or not a fern?". In Michael Krings; Carla J. Harper; Néstor Rubén Cúneo; Gar W. Rothwell (eds.). Transformative paleobotany. Papers to commemorate the life and legacy of Thomas N. Taylor. Academic Press. pp. 187–209. doi:10.1016/B978-0-12-813012-4.00011-5. ISBN978-01-281-3012-4.
^Emilio Estrada-Ruiz; Naylet K. Centeno-González; Felisa Aguilar-Arellano; Hugo I. Martínez-Cabrera (2018). "New record of the aquatic fern Marsilea, from the Olmos Formation (Upper Campanian), Coahuila, Mexico". International Journal of Plant Sciences. 179 (6): 487–496. doi:10.1086/697729. S2CID90429663.
^Natalia Zavialova; David J. Batten (2018). "Species of the water-fern megaspore genus Molaspora from a Cenomanian deposit in western France: occurrence, sporoderm ultrastructure and evolutionary relationships". Grana. 57 (5): 325–344. doi:10.1080/00173134.2017.1417475. S2CID90852432.
^Baba Senowbari-Daryan (2018). "Algae (Dasycladales) from the Upper Triassic Nayband Formation (northeast Iran)". Geopersia. 8 (1): 35–42. doi:10.22059/geope.2017.235449.648331.
^San-Ping Xie; Si-Hang Zhang; Tian-Yu Chen; Xian-Chun Zhang; Xu Zeng; Yang Yu (2018). "Late Miocene occurrence of monogeneric family Oleandraceae from southwest China and its implications on evolution of eupolypods I". Review of Palaeobotany and Palynology. 256: 13–19. Bibcode:2018RPaPa.256...13X. doi:10.1016/j.revpalbo.2018.05.002. S2CID134549827.
^Pu Huang; Lu Liu; Min Qin; Le Liu; Zhenzhen Deng; Deming Wang; James F. Basinger; Jinzhuang Xue (2018). "New Sphenophyllum plant from the Upper Devonian of Zhejiang Province, China". Historical Biology: An International Journal of Paleobiology. 30 (7): 917–927. doi:10.1080/08912963.2017.1322077. S2CID135210353.
^K. Rashidi; F. Schlagintweit (2018). "Zittelina? arumaensis (Okla 1995) nov. comb., and Suppiluliumaella tarburensis n. sp. (Dasycladales) from the upper Maastrichtian of Iran". Arabian Journal of Geosciences. 11 (17): Article 478. doi:10.1007/s12517-018-3839-1. S2CID134047995.
^Yang Xiaonan; Liu Fengxiang; Cheng Yeming (2018). "A new tree fern stem, Tempskya zhangii sp. nov. (Tempskyaceae) from the Cretaceous of Northeast China". Cretaceous Research. 84: 188–199. Bibcode:2018CrRes..84..188Y. doi:10.1016/j.cretres.2017.11.016.
^Mariusz A. Salamon; Philippe Gerrienne; Philippe Steemans; Przemysław Gorzelak; Paweł Filipiak; Alain Le Hérissé; Florentin Paris; Borja Cascales-Miñana; Tomasz Brachaniec; Magdalena Misz-Kennan; Robert Niedźwiedzki; Wiesław Trela (2018). "Putative Late Ordovician land plants"(PDF). New Phytologist. 218 (4): 1305–1309. doi:10.1111/nph.15091. hdl:2268/222752. PMID29542135.
^Viktória Baranyi; Tammo Reichgelt; Paul E. Olsen; William G. Parker; Wolfram M. Kürschner (2018). "Norian vegetation history and related environmental changes: New data from the Chinle Formation, Petrified Forest National Park (Arizona, SW USA)". GSA Bulletin. 130 (5–6): 775–795. Bibcode:2018GSAB..130..775B. doi:10.1130/B31673.1. S2CID85509995.
^Carles Martín-Closas; Alba Vicente; Jordi Pérez-Cano; Josep Sanjuan; Telm Bover-Arnal (2018). "On the earliest occurrence of Tolypella section Tolypella in the fossil record and the age of major clades in extant Characeae". Botany Letters. 165 (1): 23–33. doi:10.1080/23818107.2017.1387078. S2CID90936897.
^De-Ming Wang; Ying-Ying Zhang; Le Liu; Hong-He Xu; Min Qin; Lu Liu (2018). "Reinvestigation of the Late Devonian Shougangia bella and new insights into the evolution of fern-like plants". Journal of Systematic Palaeontology. 16 (4): 309–324. doi:10.1080/14772019.2017.1289269. S2CID90226865.
^Brian Axsmith; Judith Skog; Christian Pott (2018). "A Triassic mystery solved: fertile Pekinopteris from the Triassic of North Carolina, United States". In Michael Krings; Carla J. Harper; Néstor Rubén Cúneo; Gar W. Rothwell (eds.). Transformative paleobotany. Papers to commemorate the life and legacy of Thomas N. Taylor. Academic Press. pp. 179–186. doi:10.1016/B978-0-12-813012-4.00010-3. ISBN978-01-281-3012-4.
^Serge V. Naugolnykh; L. Uranbileg (2018). "A new discovery of Glossopteris in southeastern Mongolia as an argument for distant migration of Gondwanan plants". Journal of Asian Earth Sciences. 154: 142–148. Bibcode:2018JAESc.154..142N. doi:10.1016/j.jseaes.2017.11.039.
^Andrew B. Leslie; Jeremy Beaulieu; Garth Holman; Christopher S. Campbell; Wenbin Mei; Linda R. Raubeson; Sarah Mathews (2018). "An overview of extant conifer evolution from the perspective of the fossil record". American Journal of Botany. 105 (9): 1531–1544. doi:10.1002/ajb2.1143. PMID30157290. S2CID52120430.
^Dai Jing; Sun Bainian (2018). "Early Cretaceous atmospheric CO2 estimates based on stomatal index of Pseudofrenelopsis papillosa (Cheirolepidiaceae) from southeast China". Cretaceous Research. 85: 232–242. Bibcode:2018CrRes..85..232J. doi:10.1016/j.cretres.2017.08.011.
^Mariko Yamada; Toshihiro Yamada (2018). "Relicts of the Mid-Miocene Climatic Optimum may contribute to the floristic diversity of Japan: a case study of Pinus mikii (Pinaceae) and its extant relatives". Journal of Plant Research. 131 (2): 239–244. doi:10.1007/s10265-017-0993-6. PMID29101488. S2CID3517246.
^Chong Dong; Yong-Dong Wang; Xiao-Ju Yang; Bai-Nian Sun (2018). "Whole-plant reconstruction and updated phylogeny of Austrohamia acanthobractea (Cupressaceae) from the Middle Jurassic of Northeast China". International Journal of Plant Sciences. 179 (8): 640–662. doi:10.1086/699665. S2CID92540071.
^Mario Coiro; Guillaume Chomicki; James A. Doyle (2018). "Experimental signal dissection and method sensitivity analyses reaffirm the potential of fossils and morphology in the resolution of the relationship of angiosperms and Gnetales". Paleobiology. 44 (3): 490–510. Bibcode:2018Pbio...44..490C. doi:10.1017/pab.2018.23. S2CID91488394.
^Natalia P. Maslova; Eugeny V. Karasev; Tatiana M. Kodrul; Robert A. Spicer; Lyudmila D. Volkova; Teresa E. V. Spicer; Jianhua Jin; Xiaoyan Liu (2018). "Sun and shade leaf variability in Liquidambar chinensis and Liquidambar formosana (Altingiaceae): implications for palaeobotany". Botanical Journal of the Linnean Society. 188 (3): 296–315. doi:10.1093/botlinnean/boy047.
^Christa-Ch. Hofmann (2018). "Light and scanning electron microscopic investigations of pollen of Ericales (Ericaceae, Sapotaceae, Ebenaceae, Styracaceae and Theaceae) from five lower and mid-Eocene localities". Botanical Journal of the Linnean Society. 187 (4): 550–578. doi:10.1093/botlinnean/boy035.
^Takayuki Shiono; Buntarou Kusumoto; Moriaki Yasuhara; Yasuhiro Kubota (2018). "Roles of climate niche conservatism and range dynamics in woody plant diversity patterns through the Cenozoic". Global Ecology and Biogeography. 27 (7): 865–874. doi:10.1111/geb.12755.
^Valeria Susana Perez Loinaze; Ezequiel Ignacio Vera; Lucas Ernesto Fiorelli; Julia Brenda Desojo (2018). "Palaeobotany and palynology of coprolites from the Late Triassic Chañares Formation of Argentina: implications for vegetation provinces and the diet of dicynodonts". Palaeogeography, Palaeoclimatology, Palaeoecology. 502: 31–51. Bibcode:2018PPP...502...31P. doi:10.1016/j.palaeo.2018.04.003. hdl:11336/81031. S2CID134075049.
^Rafael Matos Lindoso; Tânia Lindner Dutra; Ismar de Souza Carvalho; Manuel Alfredo Medeiros (2018). "New plant fossils from the Lower Cretaceous of the Parnaíba Basin, Northeastern Brazil: Southern Laurasia links". Brazilian Journal of Geology. 48 (1): 127–145. doi:10.1590/2317-4889201820170071.
^He Wang; Suryendu Dutta; Richard S. Kelly; Arka Rudra; Sha Li; Qing-Qing Zhang; Qian-Qi Zhang; Yi-Xiao Wu; Mei-Zhen Cao; Bo Wang; Jian-Guo Li; Hai-Chun Zhang (2018). "Amber fossils reveal the Early Cenozoic dipterocarp rainforest in central Tibet". Palaeoworld. 27 (4): 506–513. doi:10.1016/j.palwor.2018.09.006. S2CID134436795.
^Liliana Londoño; Dana L. Royer; Carlos Jaramillo; Jaime Escobar; David A. Foster; Andrés L. Cárdenas-Rozo; Aaron Wood (2018). "Early Miocene CO2 estimates from a Neotropical fossil leaf assemblage exceed 400 ppm". American Journal of Botany. 105 (11): 1929–1937. doi:10.1002/ajb2.1187. hdl:10784/26743. PMID30418663. S2CID53277803.
^J. W. Andrae; F. A. McInerney; P. J. Polissar; J. M. K. Sniderman; S. Howard; P. A. Hall; S. R. Phelps (2018). "Initial expansion of C4 vegetation in Australia during the Late Pliocene". Geophysical Research Letters. 45 (10): 4831–4840. Bibcode:2018GeoRL..45.4831A. doi:10.1029/2018GL077833. hdl:11343/284011. S2CID134000940.
^Zhou Xinying; Yang Jilong; Wang Shiqi; Xiao Guoqiao; Zhao Keliang; Zheng Yan; Shen Hui; Li Xiaoqiang (2018). "Vegetation change and evolutionary response of large mammal fauna during the Mid-Pleistocene Transition in temperate northern East Asia". Palaeogeography, Palaeoclimatology, Palaeoecology. 505: 287–294. Bibcode:2018PPP...505..287Z. doi:10.1016/j.palaeo.2018.06.007. S2CID134868767.
^L.M. Sender; I. Escapa; A. Benedetti; R. Cúneo; J.B. Diez (2018). "Exploring the interior of cuticles and compressions of fossil plants by FIB-SEM milling and image microscopy". Journal of Microscopy. 269 (1): 48–58. doi:10.1111/jmi.12607. hdl:11336/40931. PMID28745429. S2CID440196.