Share to: share facebook share twitter share wa share telegram print page

Homological algebra

A diagram used in the snake lemma, a basic result in homological algebra.

Homological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precursor to algebraic topology) and abstract algebra (theory of modules and syzygies) at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert.

Homological algebra is the study of homological functors and the intricate algebraic structures that they entail; its development was closely intertwined with the emergence of category theory. A central concept is that of chain complexes, which can be studied through their homology and cohomology.

Homological algebra affords the means to extract information contained in these complexes and present it in the form of homological invariants of rings, modules, topological spaces, and other "tangible" mathematical objects. A spectral sequence is a powerful tool for this.

It has played an enormous role in algebraic topology. Its influence has gradually expanded and presently includes commutative algebra, algebraic geometry, algebraic number theory, representation theory, mathematical physics, operator algebras, complex analysis, and the theory of partial differential equations. K-theory is an independent discipline which draws upon methods of homological algebra, as does the noncommutative geometry of Alain Connes.

History

Homological algebra began to be studied in its most basic form in the 1800s as a branch of topology and in the 1940s became an independent subject with the study of objects such as the ext functor and the tor functor, among others.[1]

Chain complexes and homology

The notion of chain complex is central in homological algebra. An abstract chain complex is a sequence of abelian groups and group homomorphisms, with the property that the composition of any two consecutive maps is zero:

The elements of Cn are called n-chains and the homomorphisms dn are called the boundary maps or differentials. The chain groups Cn may be endowed with extra structure; for example, they may be vector spaces or modules over a fixed ring R. The differentials must preserve the extra structure if it exists; for example, they must be linear maps or homomorphisms of R-modules. For notational convenience, restrict attention to abelian groups (more correctly, to the category Ab of abelian groups); a celebrated theorem by Barry Mitchell implies the results will generalize to any abelian category. Every chain complex defines two further sequences of abelian groups, the cycles Zn = Ker dn and the boundaries Bn = Im dn+1, where Ker d and Im d denote the kernel and the image of d. Since the composition of two consecutive boundary maps is zero, these groups are embedded into each other as

Subgroups of abelian groups are automatically normal; therefore we can define the nth homology group Hn(C) as the factor group of the n-cycles by the n-boundaries,

A chain complex is called acyclic or an exact sequence if all its homology groups are zero.

Chain complexes arise in abundance in algebra and algebraic topology. For example, if X is a topological space then the singular chains Cn(X) are formal linear combinations of continuous maps from the standard n-simplex into X; if K is a simplicial complex then the simplicial chains Cn(K) are formal linear combinations of the n-simplices of K; if A = F/R is a presentation of an abelian group A by generators and relations, where F is a free abelian group spanned by the generators and R is the subgroup of relations, then letting C1(A) = R, C0(A) = F, and Cn(A) = 0 for all other n defines a sequence of abelian groups. In all these cases, there are natural differentials dn making Cn into a chain complex, whose homology reflects the structure of the topological space X, the simplicial complex K, or the abelian group A. In the case of topological spaces, we arrive at the notion of singular homology, which plays a fundamental role in investigating the properties of such spaces, for example, manifolds.

On a philosophical level, homological algebra teaches us that certain chain complexes associated with algebraic or geometric objects (topological spaces, simplicial complexes, R-modules) contain a lot of valuable algebraic information about them, with the homology being only the most readily available part. On a technical level, homological algebra provides the tools for manipulating complexes and extracting this information. Here are two general illustrations.

  • Two objects X and Y are connected by a map f between them. Homological algebra studies the relation, induced by the map f, between chain complexes associated with X and Y and their homology. This is generalized to the case of several objects and maps connecting them. Phrased in the language of category theory, homological algebra studies the functorial properties of various constructions of chain complexes and of the homology of these complexes.
  • An object X admits multiple descriptions (for example, as a topological space and as a simplicial complex) or the complex is constructed using some 'presentation' of X, which involves non-canonical choices. It is important to know the effect of change in the description of X on chain complexes associated with X. Typically, the complex and its homology are functorial with respect to the presentation; and the homology (although not the complex itself) is actually independent of the presentation chosen, thus it is an invariant of X.

Standard tools

Exact sequences

In the context of group theory, a sequence

of groups and group homomorphisms is called exact if the image of each homomorphism is equal to the kernel of the next:

Note that the sequence of groups and homomorphisms may be either finite or infinite.

A similar definition can be made for certain other algebraic structures. For example, one could have an exact sequence of vector spaces and linear maps, or of modules and module homomorphisms. More generally, the notion of an exact sequence makes sense in any category with kernels and cokernels.

Short

The most common type of exact sequence is the short exact sequence. This is an exact sequence of the form

where ƒ is a monomorphism and g is an epimorphism. In this case, A is a subobject of B, and the corresponding quotient is isomorphic to C:

(where f(A) = im(f)).

A short exact sequence of abelian groups may also be written as an exact sequence with five terms:

where 0 represents the zero object, such as the trivial group or a zero-dimensional vector space. The placement of the 0's forces ƒ to be a monomorphism and g to be an epimorphism (see below).

Long

A long exact sequence is an exact sequence indexed by the natural numbers.

Five lemma

Consider the following commutative diagram in any abelian category (such as the category of abelian groups or the category of vector spaces over a given field) or in the category of groups.

The five lemma states that, if the rows are exact, m and p are isomorphisms, l is an epimorphism, and q is a monomorphism, then n is also an isomorphism.

Snake lemma

In an abelian category (such as the category of abelian groups or the category of vector spaces over a given field), consider a commutative diagram:

where the rows are exact sequences and 0 is the zero object. Then there is an exact sequence relating the kernels and cokernels of a, b, and c:

Furthermore, if the morphism f is a monomorphism, then so is the morphism ker a → ker b, and if g' is an epimorphism, then so is coker b → coker c.

Abelian categories

In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototype example of an abelian category is the category of abelian groups, Ab. The theory originated in a tentative attempt to unify several cohomology theories by Alexander Grothendieck. Abelian categories are very stable categories, for example they are regular and they satisfy the snake lemma. The class of Abelian categories is closed under several categorical constructions, for example, the category of chain complexes of an Abelian category, or the category of functors from a small category to an Abelian category are Abelian as well. These stability properties make them inevitable in homological algebra and beyond; the theory has major applications in algebraic geometry, cohomology and pure category theory. Abelian categories are named after Niels Henrik Abel.

More concretely, a category is abelian if

Derived functor

Suppose we are given a covariant left exact functor F : AB between two abelian categories A and B. If 0 → ABC → 0 is a short exact sequence in A, then applying F yields the exact sequence 0 → F(A) → F(B) → F(C) and one could ask how to continue this sequence to the right to form a long exact sequence. Strictly speaking, this question is ill-posed, since there are always numerous different ways to continue a given exact sequence to the right. But it turns out that (if A is "nice" enough) there is one canonical way of doing so, given by the right derived functors of F. For every i≥1, there is a functor RiF: AB, and the above sequence continues like so: 0 → F(A) → F(B) → F(C) → R1F(A) → R1F(B) → R1F(C) → R2F(A) → R2F(B) → ... . From this we see that F is an exact functor if and only if R1F = 0; so in a sense the right derived functors of F measure "how far" F is from being exact.

Ext functor

Let R be a ring and let ModR be the category of modules over R. Let B be in ModR and set T(B) = HomR(A,B), for fixed A in ModR. This is a left exact functor and thus has right derived functors RnT. The Ext functor is defined by

This can be calculated by taking any injective resolution

and computing

Then (RnT)(B) is the cohomology of this complex. Note that HomR(A,B) is excluded from the complex.

An alternative definition is given using the functor G(A)=HomR(A,B). For a fixed module B, this is a contravariant left exact functor, and thus we also have right derived functors RnG, and can define

This can be calculated by choosing any projective resolution

and proceeding dually by computing

Then (RnG)(A) is the cohomology of this complex. Again note that HomR(A,B) is excluded.

These two constructions turn out to yield isomorphic results, and so both may be used to calculate the Ext functor.

Tor functor

Suppose R is a ring, and denoted by R-Mod the category of left R-modules and by Mod-R the category of right R-modules (if R is commutative, the two categories coincide). Fix a module B in R-Mod. For A in Mod-R, set T(A) = ARB. Then T is a right exact functor from Mod-R to the category of abelian groups Ab (in the case when R is commutative, it is a right exact functor from Mod-R to Mod-R) and its left derived functors LnT are defined. We set

i.e., we take a projective resolution

then remove the A term and tensor the projective resolution with B to get the complex

(note that ARB does not appear and the last arrow is just the zero map) and take the homology of this complex.

Spectral sequence

Fix an abelian category, such as a category of modules over a ring. A spectral sequence is a choice of a nonnegative integer r0 and a collection of three sequences:

  1. For all integers rr0, an object Er, called a sheet (as in a sheet of paper), or sometimes a page or a term,
  2. Endomorphisms dr : ErEr satisfying dr o dr = 0, called boundary maps or differentials,
  3. Isomorphisms of Er+1 with H(Er), the homology of Er with respect to dr.
The E2 sheet of a cohomological spectral sequence

A doubly graded spectral sequence has a tremendous amount of data to keep track of, but there is a common visualization technique which makes the structure of the spectral sequence clearer. We have three indices, r, p, and q. For each r, imagine that we have a sheet of graph paper. On this sheet, we will take p to be the horizontal direction and q to be the vertical direction. At each lattice point we have the object .

It is very common for n = p + q to be another natural index in the spectral sequence. n runs diagonally, northwest to southeast, across each sheet. In the homological case, the differentials have bidegree (−rr − 1), so they decrease n by one. In the cohomological case, n is increased by one. When r is zero, the differential moves objects one space down or up. This is similar to the differential on a chain complex. When r is one, the differential moves objects one space to the left or right. When r is two, the differential moves objects just like a knight's move in chess. For higher r, the differential acts like a generalized knight's move.

Functoriality

A continuous map of topological spaces gives rise to a homomorphism between their nth homology groups for all n. This basic fact of algebraic topology finds a natural explanation through certain properties of chain complexes. Since it is very common to study several topological spaces simultaneously, in homological algebra one is led to simultaneous consideration of multiple chain complexes.

A morphism between two chain complexes, is a family of homomorphisms of abelian groups that commute with the differentials, in the sense that for all n. A morphism of chain complexes induces a morphism of their homology groups, consisting of the homomorphisms for all n. A morphism F is called a quasi-isomorphism if it induces an isomorphism on the nth homology for all n.

Many constructions of chain complexes arising in algebra and geometry, including singular homology, have the following functoriality property: if two objects X and Y are connected by a map f, then the associated chain complexes are connected by a morphism and moreover, the composition of maps fX → Y and gY → Z induces the morphism that coincides with the composition It follows that the homology groups are functorial as well, so that morphisms between algebraic or topological objects give rise to compatible maps between their homology.

The following definition arises from a typical situation in algebra and topology. A triple consisting of three chain complexes and two morphisms between them, is called an exact triple, or a short exact sequence of complexes, and written as

if for any n, the sequence

is a short exact sequence of abelian groups. By definition, this means that fn is an injection, gn is a surjection, and Im fn =  Ker gn. One of the most basic theorems of homological algebra, sometimes known as the zig-zag lemma, states that, in this case, there is a long exact sequence in homology

where the homology groups of L, M, and N cyclically follow each other, and δn are certain homomorphisms determined by f and g, called the connecting homomorphisms. Topological manifestations of this theorem include the Mayer–Vietoris sequence and the long exact sequence for relative homology.

Foundational aspects

Cohomology theories have been defined for many different objects such as topological spaces, sheaves, groups, rings, Lie algebras, and C*-algebras. The study of modern algebraic geometry would be almost unthinkable without sheaf cohomology.

Central to homological algebra is the notion of exact sequence; these can be used to perform actual calculations. A classical tool of homological algebra is that of derived functor; the most basic examples are functors Ext and Tor.

With a diverse set of applications in mind, it was natural to try to put the whole subject on a uniform basis. There were several attempts before the subject settled down. An approximate history can be stated as follows:

These move from computability to generality.

The computational sledgehammer par excellence is the spectral sequence; these are essential in the Cartan-Eilenberg and Tohoku approaches where they are needed, for instance, to compute the derived functors of a composition of two functors. Spectral sequences are less essential in the derived category approach, but still play a role whenever concrete computations are necessary.

There have been attempts at 'non-commutative' theories which extend first cohomology as torsors (important in Galois cohomology).

See also

References

  1. ^ Weibel, Charles A. (1999). "History of homological algebra". History of Topology. pp. 797–836. doi:10.1016/b978-044482375-5/50029-8. ISBN 9780444823755.


Read other articles:

Noussair Mazraoui Mazraoui dengan Ajax di 2018Informasi pribadiNama lengkap Noussair Mazraoui[1]Tanggal lahir 14 November 1997 (umur 26)[2]Tempat lahir Leiderdorp, BelandaTinggi 183 cm (6 ft 0 in)[3]Posisi bermain Bek kananInformasi klubKlub saat ini Bayern MunichNomor 40Karier junior2002–2005 AVV Alphen2005–2006 Alphense Boys2006–2016 AjaxKarier senior*Tahun Tim Tampil (Gol)2016–2018 Jong Ajax 56 (12)2018–2022 Ajax 93 (6)2022– Bayern Munic…

Enaretta Enaretta conifera Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Coleoptera Famili: Cerambycidae Genus: Enaretta Enaretta adalah genus kumbang tanduk panjang yang tergolong famili Cerambycidae. Genus ini juga merupakan bagian dari ordo Coleoptera, kelas Insecta, filum Arthropoda, dan kingdom Animalia. Larva kumbang dalam genus ini biasanya mengebor ke dalam kayu dan dapat menyebabkan kerusakan pada batang kayu hidup atau kayu yang telah ditebang. Referensi …

Ця стаття потребує додаткових посилань на джерела для поліпшення її перевірності. Будь ласка, допоможіть удосконалити цю статтю, додавши посилання на надійні (авторитетні) джерела. Зверніться на сторінку обговорення за поясненнями та допоможіть виправити недоліки. Матер…

Daftar ini belum tentu lengkap. Anda dapat membantu Wikipedia dengan mengembangkannya. Populasi Republik Tiongkok adalah sekitar 23,31 juta pada Februari 2022. Demografi TaiwanPopulation pyramid Penduduk per kilometer persegi menurut desa Imigrasi Han Cina ke pulau-pulau Penghu dimulai pada awal abad ke-13, sementara pemukiman pulau utama terjadi dari abad ke-16 selama transisi Ming-Qing . Imigrasi lebih lanjut terjadi ketika pekerja didatangkan dari Fujian pada abad ke-17. Menurut statistik pem…

Biologi selSel hewanKomponen sel hewan pada umumnya: Nukleolus Inti sel Ribosom (titik-titik kecil sebagai bagian dari no. 5) Vesikel Retikulum endoplasma kasar Badan Golgi Sitoskeleton Retikulum endoplasma halus Mitokondria Vakuola Sitosol (cairan yang berisi organel, yang terdiri dari sitoplasma) Lisosom Sentrosom Membran sel Ribosom adalah organel ukuran kecil dan padat yang terdapat dalam sel dan berperan sebagai tempat sintesis protein.[1] Ribosom terdapat dalam sitoplasma dan melek…

Depo lokomotif Sidotopo. Depo lokomotif adalah bengkel perbaikan dan perawatan lokomotif, khususnya kereta api. Pada pengoperasian perkeretaapian Indonesia, khususnya yang dioperasikan oleh Kereta Api Indonesia, depo lokomotif tidak hanya merawat lokomotif yang dialokasikan untuk depo tersebut, namun juga merawat lokomotif milik Depo lain. Hampir di setiap daerah operasi, setidaknya ada satu Depo lokomotif induk yang memiliki lokomotif-lokomotif besar. Tidak hanya lokomotif besar ataupun baru ya…

Olympic cycling event Men's points raceat the Games of the XXIX OlympiadThe velodromeVenueLaoshan VelodromeDateAugust 16Competitors23 from 23 nationsWinning score60Medalists Joan Llaneras Spain Roger Kluge Germany Chris Newton Great Britain← 2004 Cycling at the2008 Summer OlympicsRoad cyclingRoad racemenwomenTime trialmenwomenTrack cyclingIndividual pursuitmenwomenTeam pursuitmenSprintmenwomenTeam sprintmenPoints racemenwomenKeirinmenMadisonmenMountain bikingC…

Pinus Huangshan Pinus Huangshan di Pegunungan Huang Status konservasi Risiko Rendah (IUCN 3.1)[1] Klasifikasi ilmiah Genus: Pinus Spesies: hwangshanensis Sinonim[2] Pinus luchuensis subsp. hwangshanensis (W.Y.Hsia) D.Z.Li Pinus luchuensis var. hwangshanensis (W.Y.Hsia) C.L.Wu Pinus luchuensis var. shenkanensis Silba Pinus hwangshanensis atau Tusam Huangshan,[3] adalah pinus endemik di pegunungan dan gunung yang ada di bagian timur Tiongkok yaitu di Provinsi Anhui, Fu…

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: University of the Fraser Valley – news · newspapers · books · scholar · JSTOR (March 2024) (Learn how and when to remove this template message)Public university in British Columbia, Canada University of the Fraser ValleyMottoIyaqáwtxwMotto in EnglishHalkomel…

Mayronnes L'église Saint-André Blason Administration Pays France Région Occitanie Département Aude Arrondissement Carcassonne Intercommunalité Carcassonne Agglo Maire Mandat Stéphane Poissy 2020-2026 Code postal 11220 Code commune 11227 Démographie Gentilé Mayronnais Populationmunicipale 42 hab. (2021 ) Densité 3,5 hab./km2 Géographie Coordonnées 43° 03′ 27″ nord, 2° 31′ 33″ est Altitude Min. 192 mMax. 704 m Superficie 11,86&…

American bassist and singer (born 1973) For the composer born 1901, see Troy Sanders (composer). This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Troy Sanders – news · newspapers · books · scholar ·…

FFI 1991 1991 - Jakarta Film Terpilih: Berkas:Cinta dalam sepotong roti.jpgCinta dalam Sepotong Roti Sutradara Terpilih: Imam Tantowi - Soerabaia 45 Aktor Terpilih: Tio Pakusadewo - Lagu untuk Seruni Aktris Terpilih: Lydia Kandou - Boneka dari Indiana Festival Film Indonesia 1991 adalah Festival Film Indonesia yang ke-XXII dan diadakan di Jakarta. Film yang lolos seleksi Bernafas dalam Lumpur Boneka dari Indiana Boss Carmad Cinta dalam Sepotong Roti Cintaku di Way Kambas Ketika Dia Pergi Lagu Un…

Pour les articles homonymes, voir Last Christmas et Christmas. Last Christmas George Michael du groupe Wham!, en 1988. Single de Wham!extrait de l'album The Final Face A Everything She Wants (double face A) Sortie 30 novembre 1984(voir historique de sortie) Enregistré 1984Studios Advision de Londres Durée 4:276:45 (Pudding Mix) Genre Pop rocknew wavesynthpopchant de Noël Format Disque vinyle Auteur-compositeur George Michael Producteur George Michael Label Epic Records Singles de Wh…

This article may contain excessive or inappropriate references to self-published sources. Please help improve it by removing references to unreliable sources where they are used inappropriately. (September 2022) (Learn how and when to remove this message) Laser Magnetic Storage InternationalCompany typeSubsidiaryIndustryData storageFoundedApril 1986; 38 years ago (1986-04) in Mississauga, Ontario[1][2]DefunctJuly 1992 (1992-07)FateReorganizedSucce…

Genus of marsupials Burramys[1]Temporal range: Pleistocene - Recent Mountain pygmy possum (Burramys parvus) Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Mammalia Infraclass: Marsupialia Order: Diprotodontia Family: Burramyidae Genus: BurramysBroom, 1896 Species †B. wakefieldi †B. tridactylus †B. brutyi B. parvus Burramys is a genus of the family Burramyidae, and is represented by one living and 3 extinct (fossil) species. It is one of two ge…

Seaside town in Essex, England Clacton redirects here. For other uses, see Clacton (disambiguation). Human settlement in EnglandClacton-on-SeaClacton-on-Sea from the air in 2004Clacton-on-SeaLocation within EssexPopulation53,200 (Built-up area, 2021)[1]OS grid referenceTM170150DistrictTendringShire countyEssexRegionEastCountryEnglandSovereign stateUnited KingdomPost townCLACTON-ON-SEAPostcode districtCO15, CO16Dialling code01255PoliceEssexFireEssexAmbulanceE…

此條目需要擴充。 (2015年11月27日)请協助改善这篇條目,更進一步的信息可能會在討論頁或扩充请求中找到。请在擴充條目後將此模板移除。 卡洛斯·梅内姆阿根廷總統府官方照片第47任阿根廷總統任期1989年7月8日—1999年12月10日副总统爱德华多·杜阿尔德卡洛斯·鲁考夫(英语:Carlos Ruckauf)前任劳尔·阿方辛 个人资料出生(1930-07-02)1930年7月2日 阿根廷拉里奥哈省阿尼利亚科…

Державний комітет телебачення і радіомовлення України (Держкомтелерадіо) Приміщення комітетуЗагальна інформаціяКраїна  УкраїнаДата створення 2003Керівне відомство Кабінет Міністрів УкраїниРічний бюджет 1 964 898 500 ₴[1]Голова Олег НаливайкоПідвідомчі орг…

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目可能包含原创研究。 (2018年3月29日)请协助補充参考资料、添加相关内联标签和删除原创研究内容以改善这篇条目。详细情况请参见讨论页。 此條目需要补充更多来源。 (2010年2月4日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下…

2016年美國總統選舉 ← 2012 2016年11月8日 2020 → 538個選舉人團席位獲勝需270票民意調查投票率55.7%[1][2] ▲ 0.8 %   获提名人 唐納·川普 希拉莉·克林頓 政党 共和黨 民主党 家鄉州 紐約州 紐約州 竞选搭档 迈克·彭斯 蒂姆·凱恩 选举人票 304[3][4][註 1] 227[5] 胜出州/省 30 + 緬-2 20 + DC 民選得票 62,984,828[6] 65,853,514[6] 得…

Kembali kehalaman sebelumnya