Share to: share facebook share twitter share wa share telegram print page

Informal mathematics

Informal mathematics, also called naïve mathematics, has historically been the predominant form of mathematics at most times and in most cultures, and is the subject of modern ethno-cultural studies of mathematics. The philosopher Imre Lakatos in his Proofs and Refutations aimed to sharpen the formulation of informal mathematics, by reconstructing its role in nineteenth century mathematical debates and concept formation, opposing the predominant assumptions of mathematical formalism.[1] Informality may not discern between statements given by inductive reasoning (as in approximations which are deemed "correct" merely because they are useful), and statements derived by deductive reasoning.

Terminology

Informal mathematics means any informal mathematical practices, as used in everyday life, or by aboriginal or ancient peoples, without historical or geographical limitation. Modern mathematics, exceptionally from that point of view, emphasizes formal and strict proofs of all statements from given axioms. This can usefully be called therefore formal mathematics. Informal practices are usually understood intuitively and justified with examples—there are no axioms. This is of direct interest in anthropology and psychology: it casts light on the perceptions and agreements of other cultures. It is also of interest in developmental psychology as it reflects a naïve understanding of the relationships between numbers and things. Another term used for informal mathematics is folk mathematics, which is ambiguous; the mathematical folklore article is dedicated to the usage of that term among professional mathematicians.

The field of naïve physics is concerned with similar understandings of physics. People use mathematics and physics in everyday life, without really understanding (or caring) how mathematical and physical ideas were historically derived and justified.

History

There has long been a standard account of the development of geometry in ancient Egypt, followed by Greek mathematics and the emergence of deductive logic. The modern sense of the term mathematics, as meaning only those systems justified with reference to axioms, is however an anachronism if read back into history. Several ancient societies built impressive mathematical systems and carried out complex calculations based on proofless heuristics and practical approaches. Mathematical facts were accepted on a pragmatic basis. Empirical methods, as in science, provided the justification for a given technique. Commerce, engineering, calendar creation and the prediction of eclipses and stellar progression were practiced by ancient cultures on at least three continents.

See also

References

  1. ^ Imre Lakatos, Proofs and Refutations (1976), especially the Introduction.

Read other articles:

α Arae α Arae (Choo) in the constellation Ara. Data pengamatan Epos J2000.0      Ekuinoks J2000.0 (ICRS) Rasi bintang Ara Asensio rekta  17j 31m 50.4933d[1] Deklinasi  −49° 52′ 34.121″[1] Magnitudo tampak (V) 2.76 to 2.90[2] Ciri-ciri Kelas spektrum B3Ve Indeks warna U−B −0.69[2] Indeks warna B−V −0.17[2] Indeks warna R−I −0.24[2] Jenis va…

The Full SunPoster promosi untuk The Full SunGenreRomansa MelodramaDitulis olehHeo Sung-hyeSutradaraBae Kyung-soo Kim Jung-hyunPemeranYoon Kye-sangHan Ji-hyeCho Jin-woongNegara asalKorea SelatanBahasa asliKoreaJmlh. episode16ProduksiProduser eksekutifBae Kyung-sooProduserLee Na-jung Park Woo-ramLokasi produksiKorea, ThailandDurasiSenin dan Selasa pukul 21:55 (WSK)Rumah produksiDream E&MRilis asliJaringanKorean Broadcasting SystemRilis17 Februari (2014-02-17) –14 April 2014 (…

Five-act tragedy by the French 17th-century playwright Jean Racine For other uses, see Berenice (disambiguation). BereniceTitle page from the 1671 edition of BéréniceWritten byJean RacineCharactersBérénice Titus Antiochus Paulin Arsace Phrénice RutileDate premiered1670Place premieredFranceOriginal languageFrenchSubjectRomeGenretragedySettingThe imperial palace at Rome Berenice (French: Bérénice) is a five-act tragedy by the French 17th-century playwright Jean Racine. Berenice was not play…

Election for Missouri Treasurer 2020 Missouri State Treasurer election ← 2016 November 3, 2020 2024 → Turnout70.83%[1]   Nominee Scott Fitzpatrick Vicki Englund Party Republican Democratic Popular vote 1,742,943 1,122,547 Percentage 59.1% 38.1% County results Precinct resultsFitzpatrick:      40–50%      50–60%      60–70%      70–80%   …

Carlo Gambino Carlo Gambino, chiamato anche Charles Gambino[1] (Palermo, 24 agosto 1902 – Massapequa, 15 ottobre 1976), è stato un mafioso italiano naturalizzato statunitense legato a Cosa nostra statunitense, famoso per avere guidato l'omonima potente famiglia mafiosa. Soprannominato Don Carlo, è considerato uno dei boss mafiosi più potenti e famigerati di tutti i tempi.[2][3][4] Indice 1 Biografia 1.1 Primi anni 1.2 Ascesa 1.3 Capo della famiglia Gambino 1.…

Tibouchina Tibouchina aegopogon Klasifikasi ilmiah Domain: Eukaryota Kerajaan: Plantae Divisi: Magnoliophyta Kelas: Magnoliopsida Ordo: Myrtales Famili: Melastomataceae Genus: TibouchinaAubl.[1] Spesies tipe Tibouchina asperaAubl. Spesies Lihat teks Sinonim[1] Templat:Genus list Tibouchina /ˌtɪbuːˈkaɪnə/[2][3] adalah sebuah genus tumbuhan berbunga wilayah neotropis dalam keluarga Melastomataceae.[4][5][6] Spesiesnya berupa subperdu, p…

Untuk kegunaan lain, lihat Bukan Cinderella. Bukan CinderellaPoster resmiSutradaraAdi GarinProduserUnchu ViejaySkenarioQueenBCeritaDhety AzmiBerdasarkanBukan Cinderellaoleh Dhety AzmiPemeran Fujianti Utami Rafael Adwel Penata musikGanden BramantoSinematograferFachmi J SaadPenyuntingAugit PrimaPerusahaanproduksiSuper Media PicturesTanggal rilis 28 Juli 2022 (2022-07-28) (Indonesia) Durasi88 menitNegaraIndonesiaBahasaBahasa Indonesia Bukan Cinderella adalah film drama komedi romanti…

Classic rock radio station in Seattle KZOK-FMSeattle, WashingtonBroadcast areaSeattle metropolitan areaFrequency102.5 MHz (HD Radio)Branding102.5 KZOKProgrammingFormatClassic rockOwnershipOwneriHeartMedia(iHM Licenses, LLC)Sister stationsKBKS-FM, KHHO, KJAQ, KJEB, KJR, KJR-FM, KPTRHistoryFirst air dateDecember 1964 (as KTW-FM)Former call signsKTW-FM (1964–1974)Technical informationFacility ID20357ClassCERP73,000 wattsHAAT698 meters (2,290 ft)696 meters (2,283 ft) (APP)Transmitter coo…

Division 1 1959-1960 Competizione Division 1 Sport Calcio Edizione 22ª Organizzatore LFP Date dal 15 agosto 1959al 29 maggio 1960 Luogo  Francia Partecipanti 20 Sito web lfp.fr Risultati Vincitore Stade Reims(5º titolo) Retrocessioni SochauxToloneStrasburgoBordeaux Statistiche Miglior marcatore Just Fontaine (28) Incontri disputati 380 Gol segnati 1 277 (3,36 per incontro) Cronologia della competizione 1958-1959 1960-1961 Manuale La Division 1 1959-1960 è stata la …

Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Alba Alcamo 1928. Alcamo CalcioStagione 1983-1984Sport calcio Squadra Alcamo Allenatore Franco Rondanini Presidente Gioacchino Milana Serie C214º posto nel girone D. Maggiori presenzeCampionato: Fazio, Mazza (34) Miglior marcatoreCampionato: Cammarano, Zardi (6) 198…

TaharqaTaharqo, Tirhakah, Tirhaqah, Taharka, Manetho's Tarakos, Strabo's TearcoSphinx granit yang melukiskan firaun Taharqa di Kawa, Sudan.Granite sphinx firaun Taharqa dari Kawa di SudanFiraunMasa pemerintahan690–664 SM (Dinasti ke-25)PendahuluShebitkuPenggantiTantamaniGelar kerajaan Prenomen  (Praenomen)   Nomen NefertemkhureNefertum adalah Pelindungnya[1] Nama Horus   Nama Nebty   Horus emas   PasanganTakahatenamun, Atakhebasken, Naparaye, Tabekenamun[2&…

11th-century Sufi saint Shah SultanQamar ad-Din RumiShrine of Shah Sultan Rumi in MadanpurPersonalDied1075 CEMadanpur, NetrokonaReligionSunni IslamOther namesKamaruddinSenior postingPeriod in officeEarly 11th century Shāh Sulṭān Qamar ad-Dīn Rumī (Bengali: শাহ সুলতান কমর উদ্দিন রুমী, Arabic: شاه سلطان قمر الدين رومي), was an 11th-century Sufi Muslim figure who in scholarly tradition, is believed to have been the firs…

Pierino Rovida Nazionalità  Italia Calcio Ruolo Mediano Termine carriera 1929 CarrieraSquadre di club1 1920-1921 Juventus Roma? (?)1921-1927 Alba Audace34+ (7+)1927-1929 Roma20 (0) 1 I due numeri indicano le presenze e le reti segnate, per le sole partite di campionato.Il simbolo → indica un trasferimento in prestito.   Modifica dati su Wikidata · Manuale Pietro Carlo Benedetto Rovida[1] detto Pierino (Roma, 13 gennaio 1898 – Roma, 1968) è stato un ca…

莎拉·阿什頓-西里洛2023年8月,阿什頓-西里洛穿著軍服出生 (1977-07-09) 1977年7月9日(46歲) 美國佛羅里達州国籍 美國别名莎拉·阿什頓(Sarah Ashton)莎拉·西里洛(Sarah Cirillo)金髮女郎(Blonde)职业記者、活動家、政治活動家和候選人、軍醫活跃时期2020年—雇主內華達州共和黨候選人(2020年)《Political.tips》(2020年—)《LGBTQ國度》(2022年3月—2022年10月)烏克蘭媒體…

Ceuthomantis Ceuthomantis smaragdinus Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКласс:ЗемноводныеПодкласс:Беспанцирн…

This article is about the electoral district in the United Kingdom. For Canadian Parliament constituency, see Halifax (federal electoral district).Parliamentary constituency in the United Kingdom HalifaxBorough constituencyfor the House of CommonsBoundary of Halifax in West YorkshireLocation of West Yorkshire within EnglandCounty1832–1974: West Riding of Yorkshire1974–present: West YorkshireElectorate70,413 (December 2019)[1]Major settlementsHalifax, Sowerby BridgeCurrent constituenc…

Untuk situs budaya di Sianjur Mulamula, lihat Sopo Guru Tatea Bulan. Guru Tatea Bulan adalah salah satu nenek moyang dari marga-marga Batak dan merupakan anak pertama dari Si Raja Batak.[1]Guru Tatea BulanSopo Guru Tatea Bulan di Tapanuli Samosir.Aksara Batakᯎᯮᯒᯮᯖᯖᯩᯀᯅᯮᯞᯉ᯲Nama/penulisanalternatifNaimarataJulukan/nama panggilanOmpu GuruSilsilahJarakgenerasi denganSiraja Batak1Si Raja Batak2Guru Tatea BulanNama istriSi Boru BasoburningNama anak1. Siraja Biakbiak / …

Bridge in Lake Havasu City, Arizona London BridgeLondon Bridge in Lake Havasu CityCoordinates34°28′18″N 114°20′50″W / 34.4716789°N 114.3471778°W / 34.4716789; -114.3471778CarriesMcCulloch Boulevard NorthCrossesBridgewater Channel CanalLocaleLake Havasu City, Arizona, United StatesCharacteristicsDesignArch bridgeMaterialClynelish (Brora) sandstone and various granite mixesTotal length930 feet (280 m; 167 sm)[1]Longest span45.6 metres (150 …

Pour les articles homonymes, voir Cottonwood. CottonwoodGéographiePays  États-UnisÉtat ArizonaComté comté de YavapaiSuperficie 42,5 km2 (2010)Surface en eau 0 %Altitude 1 010 mCoordonnées 34° 43′ 56″ N, 112° 01′ 07″ ODémographiePopulation 12 029 hab. (2020)Densité 283 hab./km2 (2020)FonctionnementStatut Cité aux États-UnisChef de l'exécutif Tim Elinski (d) (juin 2022)IdentifiantsCode postal 86326Code FIPS 04-16410…

تاريخ التقانة حسب العصور التاريخ ما قبل الحديث ما قبل التاريخ العصر الحجري الثورة الزراعية العصر البرونزي العصر الحديدي التقانة القديمة التاريخ الحديث تصنيع أولي الثورة الصناعية توحيد المعايير الثورة الصناعية الثانية عصر الآلة عصر الذرة عصر النفاث عصر الفضاء ثورة رقمية (…

Kembali kehalaman sebelumnya