Share to: share facebook share twitter share wa share telegram print page

Reaction rate

Reaction rate
Common symbols
ν
SI unitmol⋅L-1⋅s-1
In SI base unitsmol⋅m-3⋅s-1
DimensionL-3⋅T-1⋅N
Iron rusting has a low reaction rate. This process is slow.
Wood combustion has a high reaction rate. This process is fast.

The reaction rate or rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per unit time.[1] Reaction rates can vary dramatically. For example, the oxidative rusting of iron under Earth's atmosphere is a slow reaction that can take many years, but the combustion of cellulose in a fire is a reaction that takes place in fractions of a second. For most reactions, the rate decreases as the reaction proceeds. A reaction's rate can be determined by measuring the changes in concentration over time.

Chemical kinetics is the part of physical chemistry that concerns how rates of chemical reactions are measured and predicted, and how reaction-rate data can be used to deduce probable reaction mechanisms.[2] The concepts of chemical kinetics are applied in many disciplines, such as chemical engineering,[3][4] enzymology and environmental engineering.[5][6][7]

Formal definition

Consider a typical balanced chemical reaction:

The lowercase letters (a, b, p, and q) represent stoichiometric coefficients, while the capital letters represent the reactants (A and B) and the products (P and Q).

According to IUPAC's Gold Book definition[8] the reaction rate v for a chemical reaction occurring in a closed system at constant volume, without a build-up of reaction intermediates, is defined as:

where [X] denotes the concentration of the substance X (= A, B, P or Q). The reaction rate thus defined has the units of mol/L/s.

The rate of a reaction is always positive. A negative sign is present to indicate that the reactant concentration is decreasing. The IUPAC[8] recommends that the unit of time should always be the second. The rate of reaction differs from the rate of increase of concentration of a product P by a constant factor (the reciprocal of its stoichiometric number) and for a reactant A by minus the reciprocal of the stoichiometric number. The stoichiometric numbers are included so that the defined rate is independent of which reactant or product species is chosen for measurement.[9]: 349  For example, if a = 1 and b = 3 then B is consumed three times more rapidly than A, but is uniquely defined. An additional advantage of this definition is that for an elementary and irreversible reaction, v is equal to the product of the probability of overcoming the transition state activation energy and the number of times per second the transition state is approached by reactant molecules. When so defined, for an elementary and irreversible reaction, v is the rate of successful chemical reaction events leading to the product.

The above definition is only valid for a single reaction, in a closed system of constant volume. If water is added to a pot containing salty water, the concentration of salt decreases, although there is no chemical reaction.

For an open system, the full mass balance must be taken into account:

where

  • FA0 is the inflow rate of A in molecules per second;
  • FA the outflow;
  • v is the instantaneous reaction rate of A (in number concentration rather than molar) in a given differential volume, integrated over the entire system volume V at a given moment.

When applied to the closed system at constant volume considered previously, this equation reduces to: , where the concentration [A] is related to the number of molecules NA by Here N0 is the Avogadro constant.

For a single reaction in a closed system of varying volume the so-called rate of conversion can be used, in order to avoid handling concentrations. It is defined as the derivative of the extent of reaction with respect to time.

Here νi is the stoichiometric coefficient for substance i, equal to a, b, p, and q in the typical reaction above. Also V is the volume of reaction and Ci is the concentration of substance i.

When side products or reaction intermediates are formed, the IUPAC[8] recommends the use of the terms the rate of increase of concentration and rate of the decrease of concentration for products and reactants, properly.

Reaction rates may also be defined on a basis that is not the volume of the reactor. When a catalyst is used the reaction rate may be stated on a catalyst weight (mol g−1 s−1) or surface area (mol m−2 s−1) basis. If the basis is a specific catalyst site that may be rigorously counted by a specified method, the rate is given in units of s−1 and is called a turnover frequency.

Influencing factors

Factors that influence the reaction rate are the nature of the reaction, concentration, pressure, reaction order, temperature, solvent, electromagnetic radiation, catalyst, isotopes, surface area, stirring, and diffusion limit. Some reactions are naturally faster than others. The number of reacting species, their physical state (the particles that form solids move much more slowly than those of gases or those in solution), the complexity of the reaction and other factors can greatly influence the rate of a reaction.

Reaction rate increases with concentration, as described by the rate law and explained by collision theory. As reactant concentration increases, the frequency of collision increases. The rate of gaseous reactions increases with pressure, which is, in fact, equivalent to an increase in the concentration of the gas. The reaction rate increases in the direction where there are fewer moles of gas and decreases in the reverse direction. For condensed-phase reactions, the pressure dependence is weak.

The order of the reaction controls how the reactant concentration (or pressure) affects the reaction rate.

Usually conducting a reaction at a higher temperature delivers more energy into the system and increases the reaction rate by causing more collisions between particles, as explained by collision theory. However, the main reason that temperature increases the rate of reaction is that more of the colliding particles will have the necessary activation energy resulting in more successful collisions (when bonds are formed between reactants). The influence of temperature is described by the Arrhenius equation. For example, coal burns in a fireplace in the presence of oxygen, but it does not when it is stored at room temperature. The reaction is spontaneous at low and high temperatures but at room temperature, its rate is so slow that it is negligible. The increase in temperature, as created by a match, allows the reaction to start and then it heats itself because it is exothermic. That is valid for many other fuels, such as methane, butane, and hydrogen.

Reaction rates can be independent of temperature (non-Arrhenius) or decrease with increasing temperature (anti-Arrhenius). Reactions without an activation barrier (for example, some radical reactions), tend to have anti-Arrhenius temperature dependence: the rate constant decreases with increasing temperature.

Many reactions take place in solution and the properties of the solvent affect the reaction rate. The ionic strength also has an effect on the reaction rate.

Electromagnetic radiation is a form of energy. As such, it may speed up the rate or even make a reaction spontaneous as it provides the particles of the reactants with more energy.[citation needed] This energy is in one way or another stored in the reacting particles (it may break bonds, and promote molecules to electronically or vibrationally excited states...) creating intermediate species that react easily. As the intensity of light increases, the particles absorb more energy and hence the rate of reaction increases. For example, when methane reacts with chlorine in the dark, the reaction rate is slow. It can be sped up when the mixture is put under diffused light. In bright sunlight, the reaction is explosive.

The presence of a catalyst increases the reaction rate (in both the forward and reverse reactions) by providing an alternative pathway with a lower activation energy. For example, platinum catalyzes the combustion of hydrogen with oxygen at room temperature.

The kinetic isotope effect consists of a different reaction rate for the same molecule if it has different isotopes, usually hydrogen isotopes, because of the relative mass difference between hydrogen and deuterium. In reactions on surfaces, which take place, for example, during heterogeneous catalysis, the rate of reaction increases as the surface area does. That is because more particles of the solid are exposed and can be hit by reactant molecules.

Stirring can have a strong effect on the rate of reaction for heterogeneous reactions.

Some reactions are limited by diffusion. All the factors that affect a reaction rate, except for concentration and reaction order, are taken into account in the reaction rate coefficient (the coefficient in the rate equation of the reaction).

Rate equation

For a chemical reaction aA + bB → pP + qQ, the rate equation or rate law is a mathematical expression used in chemical kinetics to link the rate of a reaction to the concentration of each reactant. For a closed system at constant volume, this is often of the form

For reactions that go to completion (which implies very small kr), or if only the initial rate is analyzed (with initial vanishing product concentrations), this simplifies to the commonly quoted form

For gas phase reaction the rate equation is often alternatively expressed in terms of partial pressures.

In these equations k(T) is the reaction rate coefficient or rate constant, although it is not really a constant, because it includes all the parameters that affect reaction rate, except for time and concentration. Of all the parameters influencing reaction rates, temperature is normally the most important one and is accounted for by the Arrhenius equation.

The exponents n and m are called reaction orders and depend on the reaction mechanism. For an elementary (single-step) reaction, the order with respect to each reactant is equal to its stoichiometric coefficient. For complex (multistep) reactions, however, this is often not true and the rate equation is determined by the detailed mechanism, as illustrated below for the reaction of H2 and NO.

For elementary reactions or reaction steps, the order and stoichiometric coefficient are both equal to the molecularity or number of molecules participating. For a unimolecular reaction or step, the rate is proportional to the concentration of molecules of reactant, so the rate law is first order. For a bimolecular reaction or step, the number of collisions is proportional to the product of the two reactant concentrations, or second order. A termolecular step is predicted to be third order, but also very slow as simultaneous collisions of three molecules are rare.

By using the mass balance for the system in which the reaction occurs, an expression for the rate of change in concentration can be derived. For a closed system with constant volume, such an expression can look like

Example of a complex reaction: hydrogen and nitric oxide

For the reaction

the observed rate equation (or rate expression) is

As for many reactions, the experimental rate equation does not simply reflect the stoichiometric coefficients in the overall reaction: It is third order overall: first order in H2 and second order in NO, even though the stoichiometric coefficients of both reactants are equal to 2.[10]

In chemical kinetics, the overall reaction rate is often explained using a mechanism consisting of a number of elementary steps. Not all of these steps affect the rate of reaction; normally the slowest elementary step controls the reaction rate. For this example, a possible mechanism is

Reactions 1 and 3 are very rapid compared to the second, so the slow reaction 2 is the rate-determining step. This is a bimolecular elementary reaction whose rate is given by the second-order equation where k2 is the rate constant for the second step.

However N2O2 is an unstable intermediate whose concentration is determined by the fact that the first step is in equilibrium, so that where K1 is the equilibrium constant of the first step. Substitution of this equation in the previous equation leads to a rate equation expressed in terms of the original reactants

This agrees with the form of the observed rate equation if it is assumed that k = k2K1. In practice the rate equation is used to suggest possible mechanisms which predict a rate equation in agreement with experiment.

The second molecule of H2 does not appear in the rate equation because it reacts in the third step, which is a rapid step after the rate-determining step, so that it does not affect the overall reaction rate.

Temperature dependence

Each reaction rate coefficient k has a temperature dependency, which is usually given by the Arrhenius equation:

where

Since at temperature T the molecules have energies given by a Boltzmann distribution, one can expect the number of collisions with energy greater than Ea to be proportional to .

The values for A and Ea are dependent on the reaction. There are also more complex equations possible, which describe the temperature dependence of other rate constants that do not follow this pattern.

Temperature is a measure of the average kinetic energy of the reactants. As temperature increases, the kinetic energy of the reactants increases. That is, the particles move faster. With the reactants moving faster this allows more collisions to take place at a greater speed, so the chance of reactants forming into products increases, which in turn results in the rate of reaction increasing. A rise of ten degrees Celsius results in approximately twice the reaction rate.

Reaction coordinate diagram for the bimolecular nucleophilic substitution (SN2) reaction between bromomethane and the hydroxide anion

The minimum kinetic energy required for a reaction to occur is called the activation energy and is denoted by Ea or ΔG. The transition state or activated complex shown on the diagram is the energy barrier that must be overcome when changing reactants into products. The molecules with an energy greater than this barrier have enough energy to react.

For a successful collision to take place, the collision geometry must be right, meaning the reactant molecules must face the right way so the activated complex can be formed.

A chemical reaction takes place only when the reacting particles collide. However, not all collisions are effective in causing the reaction. Products are formed only when the colliding particles possess a certain minimum energy called threshold energy. As a rule of thumb, reaction rates for many reactions double for every ten degrees Celsius increase in temperature.[11] For a given reaction, the ratio of its rate constant at a higher temperature to its rate constant at a lower temperature is known as its temperature coefficient, (Q). Q10 is commonly used as the ratio of rate constants that are ten degrees Celsius apart.

Pressure dependence

The pressure dependence of the rate constant for condensed-phase reactions (that is, when reactants and products are solids or liquid) is usually sufficiently weak in the range of pressures normally encountered in industry that it is neglected in practice.

The pressure dependence of the rate constant is associated with the activation volume. For the reaction proceeding through an activation-state complex:

the activation volume, ΔV, is:

where denotes the partial molar volume of a species and (a double dagger) indicates the activation-state complex.

For the above reaction, one can expect the change of the reaction rate constant (based either on mole fraction or on molar concentration) with pressure at constant temperature to be:[9]: 390 

In practice, the matter can be complicated because the partial molar volumes and the activation volume can themselves be a function of pressure.

Reactions can increase or decrease their rates with pressure, depending on the value of ΔV. As an example of the possible magnitude of the pressure effect, some organic reactions were shown to double the reaction rate when the pressure was increased from atmospheric (0.1 MPa) to 50 MPa (which gives ΔV = −0.025 L/mol).[12]

See also

Notes

  1. ^ McMurry, John; Fay, Robert C.; Robinson, Jill K. (31 December 2014). Chemistry (Seventh ed.). Boston. p. 492. ISBN 978-0-321-94317-0. OCLC 889577526.{{cite book}}: CS1 maint: location missing publisher (link)
  2. ^ Petrucci, Ralph H.; Herring, F. Geoffrey; Madura, Jeffry D.; Bissonnette, Carey (4 February 2016). General chemistry: principles and modern applications (Eleventh ed.). Toronto. p. 923. ISBN 978-0-13-293128-1. OCLC 951078429.{{cite book}}: CS1 maint: location missing publisher (link)
  3. ^ Silva, Camylla K. S.; Baston, Eduardo P.; Melgar, Lisbeth Z.; Bellido, Jorge D. A. (2019-10-01). "Ni/Al2O3-La2O3 catalysts synthesized by a one-step polymerization method applied to the dry reforming of methane: effect of precursor structures of nickel, perovskite and spinel". Reaction Kinetics, Mechanisms and Catalysis. 128 (1): 251–269. doi:10.1007/s11144-019-01644-3. ISSN 1878-5204. S2CID 199407594.
  4. ^ Elizalde, Ignacio; Mederos, Fabián S.; del Carmen Monterrubio, Ma.; Casillas, Ninfa; Díaz, Hugo; Trejo, Fernando (2019-02-01). "Mathematical modeling and simulation of an industrial adiabatic trickle-bed reactor for upgrading heavy crude oil by hydrotreatment process". Reaction Kinetics, Mechanisms and Catalysis. 126 (1): 31–48. doi:10.1007/s11144-018-1489-7. ISSN 1878-5204. S2CID 105735334.
  5. ^ Liu, Jiaqi; Shen, Meiqing; Li, Chenxu; Wang, Jianqiang; Wang, Jun (2019-10-01). "Enhanced hydrothermal stability of a manganese metavanadate catalyst based on WO3–TiO2 for the selective catalytic reduction of NOx with NH3". Reaction Kinetics, Mechanisms and Catalysis. 128 (1): 175–191. doi:10.1007/s11144-019-01624-7. ISSN 1878-5204. S2CID 199078451.
  6. ^ Li, Xiaoliang; Feng, Jiangjiang; Xu, Zhigang; Wang, Junqiang; Wang, Yujie; Zhao, Wei (2019-10-01). "Cerium modification for improving the performance of Cu-SSZ-13 in selective catalytic reduction of NO by NH3". Reaction Kinetics, Mechanisms and Catalysis. 128 (1): 163–174. doi:10.1007/s11144-019-01621-w. ISSN 1878-5204. S2CID 189874787.
  7. ^ Vedyagin, Aleksey A.; Stoyanovskii, Vladimir O.; Kenzhin, Roman M.; Slavinskaya, Elena M.; Plyusnin, Pavel E.; Shubin, Yury V. (2019-06-01). "Purification of gasoline exhaust gases using bimetallic Pd–Rh/δ-Al2O3 catalysts". Reaction Kinetics, Mechanisms and Catalysis. 127 (1): 137–148. doi:10.1007/s11144-019-01573-1. ISSN 1878-5204. S2CID 145994544.
  8. ^ a b c IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "Rate of reaction". doi:10.1351/goldbook.R05156
  9. ^ a b Laidler, K. J.; Meiser, J.H. (1982). Physical Chemistry. Benjamin/Cummings. ISBN 0-8053-5682-7.
  10. ^ Laidler, K. J. (1987). Chemical Kinetics (3rd ed.). Harper & Row. p. 277. ISBN 0060438622.
  11. ^ Connors, Kenneth (1990). Chemical Kinetics:The Study of Reaction Rates in Solution. VCH Publishers. p. 14. ISBN 978-0-471-72020-1.
  12. ^ Isaacs, Neil S. (1995). "Section 2.8.3". Physical Organic Chemistry (2nd ed.). Harlow: Addison Wesley Longman. ISBN 9780582218635.

Read other articles:

Dogon peopleOrang Dogon dengan topeng tradisional, MaliDaerah dengan populasi signifikanBahasaDogonAgamaAnimisme, Islam Pemukiman Dogon di Banani. Topeng Dogon di Wilayah Kota Wisata Mopti Topeng Dogon dengan menggunakan egrang Dogon adalah nama dari kelompok suku yang menempati wilayah plato tengah Mali, di selatan sungai Niger. Saat ini suku Dogon berpopulasi sekitar 800 ribu jiwa. Suku Dogon sangat terkenal dan menjadi objek studi antropologi banyak ilmuwan. Mereka terkenal akan mitologi, keb…

Admiral Flota Sovetskogo Soyuza Kuznetsov Kapal induk Admiral Kuznetsov (063) Sejarah → Uni Soviet → Rusia Nama Admiral Flota Sovetskogo Soyuza KuznetsovAsal nama Nikolay KuznetsovDipesan 31 Maret 1981Pembangun Galangan Kapal Selatan NikolayevBiaya US$ 7 Miliar (Rp109,31 Triliun)Pasang lunas 1 April 1982Diluncurkan 6 Desember 1985Mulai berlayar 20 Januari 1991Diperbarui Mei–Agustus 2015, Juli 2018–sekarangIdentifikasi 063Status Dalam proses perbaikanLencana Ciri-ciri umum Kelas dan jenis…

Battalion – December 1939Division – February 1943 – March 1944Panzergrenadier-Division – 1944–1945.Division Brandenburg Vehicle InsigniaAktif1939–1945Negara Nazi GermanyCabangArmyPeranSpecial OperationsSpecial ReconnaissanceAirborne infantryCovert operationsAmphibious warfareJumlah personelCompany (initial)Division (at peak)Bagian dariAbwehrMarkasStendalFriedenthalJulukan'Brandenburg'PertempuranWorld War IITokohTokoh berjasaTheodor von HippelAdrian von Fölkersam Brandenburgers …

Buku mantera abad ke-19, yang ditulis oleh seorang tabib Wales Mantera adalah sebuah rumus sihir yang ditujukan untuk memicu dampak magis terhadap seseorang atau benda. Rumus tersebut dapat dituturkan, dinyanyikan atau dilantunkan.[1] Referensi ^ Cushman, Stephen (2012). Princeton Encyclopedia of Poetry and Poetics : Fourth Edition. Princeton, ProQuest Ebook Central: Princeton University Press. hlm. 681.  Pranala luar Media terkait Incantations di Wikimedia Commons Pengawa…

Allied Telesis Holdings K.K.JenisPublikIndustriNetworkingDidirikan1987KantorpusatBothell (Washington, Seattle  Amerika Serikat), Tokyo,  Jepang[1]TokohkunciTakayoshi Oshima, CEOProdukSwitch, Router, FirewallSitus webwww.alliedtelesis.com Allied Telesis adalah perusahaan telekomunikasi yang dulu dikenal dengan nama Allied Telesyn. Perusahaan ini berkantor pusat di Jepang dan memiliki kantor besar di Bothell, Washington, Seattle, Amerika Serikat, didirikan pada tahun 1987 sebagai…

Lapangan Terbang Ain M'lilaBagian dari Angkatan Udara Kedua BelasSkuadron Pengeboman ke-20 Boeing B-17F-85-BO Fortress 42-30082 sedang diservis di Lapangan Terbang Ain M'lila, AljazairLapangan Terbang Ain M'lilaLokasi Lapangan Udara Ain M'lila, AljazairKoordinat36°00′19″N 006°34′22″E / 36.00528°N 6.57278°E / 36.00528; 6.57278 (Lapangan Terbang Ain M'lila)Koordinat: 36°00′19″N 006°34′22″E / 36.00528°N 6.57278°E / 36.0…

Storing carbon in a carbon pool (natural as well as enhanced or artificial processes) This article is about storing carbon so that it is not in the atmosphere. For removing carbon dioxide from industrial point sources before it enters the atmosphere, see Carbon capture and storage. For removing carbon dioxide from the atmosphere (and negative emissions), see Carbon dioxide removal. Schematic showing both geologic and biologic carbon sequestration of the excess carbon dioxide in the atmosphere em…

Moody's CorporationJenisPerusahaan publik (NYSE: MCO)IndustriLembaga pemeringkat kreditDidirikanNew York (1909)KantorpusatNew York CityProdukPeringkat kreditAnakusahaPT Moody's IndonesiaSitus webwww.moodys.com Moody's Corporation (NYSE: MCO) adalah perusahaan induk dari Moody's Investors Service yang menyediakan jasa analisis keuangan dan analisis atas lembaga usaha dan lembaga pemerintah . Perusaahan ini juga memberikan peringkat atas kelayakan kredit dari peminjam dengan menggunakan peringkat …

VII CorpsActive1805–18071812–18131814Country First French EmpireBranch French Imperial ArmySizeCorpsEngagementsWar of the Third CoalitionWar of the Fourth CoalitionWar of the Fifth CoalitionWar of the Sixth CoalitionCommandersNotablecommandersPierre AugereauFrançois Joseph LefebvreNicolas OudinotJean ReynierLaurent Gouvion Saint-CyrMilitary unit vteCorps of the Grande ArméeRegular I II III IV V VI VII VIII IX X XI XII XIII XIV Cavalry Reserve I II III IV V VI The VII Corps of the…

Les politiques de santé consistent à fixer collectivement des caps pour donner à chacun les moyens de se soigner, et de rester en bonne santé le plus longtemps possible. De manière générale, le terme de « politiques de santé » désigne les politiques publiques des États, ou des autres échelons de décisions politiques (Union européenne, régions…). Mais l’État et les échelons locaux de décision politique ne sont pas les seules instances à se saisir de ces questions…

Kereta Api Cut Meutia ka CUT MEUTIA Kreung Geukeuh ⇋ Kutablang pp KRD-I Cut Meutia dengan livery terbaruInformasi umumJenis layananKomuter EkonomiStatusBeroperasiDaerah operasiSub Divisi Regional I.1 AcehPendahuluKereta Api Perintis AcehMulai beroperasi 1 Desember 2013; 10 tahun lalu (2013-12-01) (sebagai KA Perintis Aceh) 3 November 2016; 7 tahun lalu (2016-11-03) (sebagai KA Cut Meutia) Terakhir beroperasi1 Juli 2014; 9 tahun lalu (2014-07-01) (sebagai KA Perintis Aceh)Operato…

Mi instan ramen. Makanan ringan, termasuk keripik kentang. Makanan olahan atau Makanan olahan tersier, adalah makanan siap saji yang komersial (sering melalui pemrosesan) untuk mengoptimalkan kemudahan konsumsi. Makanan jenis ini biasanya siap dimakan tanpa persiapan lebih lanjut. Mungkin juga mudah dibawa-bawa, memiliki masa sebelum kedaluwarsa yang panjang, atau kombinasi dari beberapa keunggulan tersebut. Meskipun makanan restoran memenuhi definisi sebagai makanan olahan, istilah ini jarang d…

Harry Lyon [navigator] left, James Warner [right] ca. 1928 The Southern Cross landing in Brisbane in 1928. American Harry Lyon (1885?–1963?[1]), was the navigator for the first flight across the Pacific in 1928 with Charles Kingsford Smith (as pilot), Charles Ulm (as co-pilot) and fellow-American James Warner as the (radio operator) in the Southern Cross.[2][3] According to the Spokane Daily Chronicle, he was a son of US Navy Rear Admiral Henry W. Lyon and served as a l…

Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Viareggio Calcio. Associazione Sportiva Calcio ViareggioStagione 1973-1974Sport calcio Squadra Viareggio Allenatore Roberto Balestri poi Ruggero Salar Presidente Giorgio Bonuccelli Serie C18º posto nel girone B.Retrocesso in Serie D. Coppa Italia SemiprofessionistiF…

10th round of the 2008 Formula One season 2008 German Grand Prix Race 10 of 18 in the 2008 Formula One World Championship← Previous raceNext race → Race detailsDate 20 July 2008Official name Formula 1 Grosser Preis Santander von Deutschland 2008Location Hockenheimring, Hockenheim, GermanyCourse Permanent racing facilityCourse length 4.574 km (2.842 miles)Distance 67 laps, 306.458 km (190.424 miles)Weather Cloudy, later sunny[1]Pole positionDriver Lewis Hamilton Mc…

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府與…

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要編修,以確保文法、用詞、语气、格式、標點等使用恰当。 (2013年8月6日)請按照校對指引,幫助编辑這個條目。(幫助、討論) 此條目剧情、虛構用語或人物介紹过长过细,需清理无关故事主轴的细节、用語和角色介紹。 (2020年10月6日)劇情、用語和人物介紹都只是用於了解故事主軸,輔助讀…

Национальное аэрокосмическое агентство Азербайджана Штаб-квартира Баку, ул. С. Ахундова, AZ 1115 Локация  Азербайджан Тип организации Космическое агентство Руководители Директор: Натиг Джавадов Первый заместитель генерального директора Тофик Сулейманов Основание Основ…

Den här artikeln har skapats av Lsjbot, ett program (en robot) för automatisk redigering. (2015-12)Artikeln kan innehålla fakta- eller språkfel, eller ett märkligt urval av fakta, källor eller bilder. Mallen kan avlägsnas efter en kontroll av innehållet (vidare information) Bogiç-Palvar Polvar, Bogiq-Polvar, Palvari, Bogiq-Palvar, Bogiq, Bogiq-Polvari, Bogiç-Palvari Ort Land  Albanien Prefektur Qarku i Shkodrës Koordinater 42°12′12″N 19°27′11″Ö / 42.203…

Diego ArchuletaBorn1814Plaza de Los Luceros, Viceroyalty of New Spain(now Rio Arriba County, New Mexico, U.S.)Died1884 (aged 69–70)Santa Fe, New Mexico, U.S.Allegiance Mexico United StatesService/branchMexican ArmyNew Mexico MilitiaYears of service1846–1848 (Mexico)1862–1865 (USA)Rank Colonel (Mexico) Brigadier General (Militia)Unit1st Infantry Regiment, New Mexico MilitiaCommands held1st Division, New Mexico MilitiaBattles/warsMexican–American War Capture of Santa Fe Battl…

Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9 
Kembali kehalaman sebelumnya