Tout sous-espace vectorielfermé d'un espace de Banach. Par exemple, si X est un espace topologique et E un espace de Banach : le sous-espace de B(X, E) des fonctions à la fois continues et bornées, en particulier l'espace C(K, E) des fonctions continues sur un espace compactK. (En fait, d'après le théorème de Banach-Alaoglu-Bourbaki, tout espace de Banach est isomorphe à un sous-espace fermé d'un C(K, ℝ).)
Tout espace vectoriel normé quotient d'un espace de Banach par un sous-espace fermé — grâce à la caractérisation par les séries ci-dessus. (En fait, tout espace de Banach séparable est un tel quotient de ℓ1.)
ℝ vu comme un espace vectoriel.
Théorème de l'application ouverte et ses variantes
Comme tout espace métrique complet, un espace de Banach vérifie la propriété suivante :
Soit une suite décroissante de fermés non vides dont la suite des diamètres tend vers 0. Alors l'intersection des fermés est non vide et réduite à un singleton.
Cette propriété permet de démontrer que tout espace métrique complet (en particulier tout espace de Banach) est de Baire, et d'en déduire le théorème de Banach-Steinhaus ci-dessous.
Soient un espace de Banach, un espace vectoriel normé, une famille d'éléments de ℒ(E,F) et l'ensemble des vecteurs de tels que . Alors, ou bien est maigre, c'est-à-dire réunion dénombrable d'ensembles rares (un ensemble étant rare si son adhérence est d'intérieur vide) et son complémentaire est dense, ou bien (où désigne la norme d'opérateur de ). En particulier, si , seule la seconde éventualité est possible.