Numero di BettiIn topologia algebrica, il -esimo numero di Betti di uno spazio topologico , definito per ogni 0 e denotato con , è un numero naturale o infinito che, in termini intuitivi, costituisce il numero di buchi o cavità -dimensionali presenti in . Nel caso in cui lo spazio topologico in questione sia una superficie Σ, il primo numero di Betti (Σ) coincide con il massimo numero di tagli (circolari) che possono essere eseguiti senza dividere la superficie in due pezzi. Il termine "numeri di Betti" fu coniato da Henri Poincaré in riferimento a Enrico Betti. DefinizioneIl -esimo numero di Betti dello spazio è definito come il rango (i.e. il numero dei generatori) del gruppo abeliano , il -esimo gruppo di omologia di . ProprietàI numeri di Betti (razionali) non tengono conto della torsione dei gruppi di omologia, ma sono invarianti topologici basilari molto utili. Nei termini più intuitivi, permettono di contare il numero di buchi in diverse dimensioni. Per un cerchio, il primo numero di Betti è 1. Per un generico pretzel il primo numero di Betti è il doppio del numero dei buchi. Esempi
In effetti, per un n-toro ci si può aspettare di veder comparire i coefficienti binomiali. Questo è il caso del teorema di Künneth. Collegamenti esterni
|