Share to: share facebook share twitter share wa share telegram print page

晶系

單斜晶系蓝铁矿
正交晶系铁橄榄石
四方晶系锐钛矿
三方晶系赤铁矿
六方晶系綠柱石
立方晶系錳鋁榴石
最常見的金屬晶系

晶体通常可分为七種晶系,即立方晶系六方晶系四方晶系三方晶系正交晶系单斜晶系三斜晶系。其中的立方晶系具有各向同性,属于高级晶族

晶系的特徵

晶系的特徵與細分關係如下表:

晶族 晶系 點群的對稱性 點群 空間群 布拉菲晶格 特征 晶格系統
三斜 2 2 1 α≠β≠γ≠90°,a≠b≠c 三斜
單斜 1個兩次對稱軸 或 1個對稱面 3 13 2 α=γ=90°,β≠90°,a≠b≠c 單斜
正交/斜方 3個兩次對稱軸 或 1個兩次對稱軸+2個對稱面 3 59 4 α=β=γ=90°,a≠b≠c 正交/斜方
四方/正方 1個四次對稱軸 7 68 2 α=β=γ=90°,a=b≠c 四方/正方
六方 三方 1個三次對稱軸 5 7 1 α=β=γ≠90°,a=b=c 三方
18 1 α=β=90°,γ=120°,a=b≠c 六方
六方 1個六次對稱軸 7 27
立方/等轴 4個三次對稱軸 5 36 3 α=β=γ=90°,a=b=c 立方/等轴
6 7 共计 32 230 14 7


布拉菲晶格

這14種布拉菲晶格可分成7種晶系,每種晶系又可依中心原子在晶胞中的位置不同再分成6種晶格:

  • 簡單(P):晶格點只在晶格的八個頂點處
  • 體心(I):除八個頂點處有晶格點外,晶胞中心還有一個晶格點
  • 面心(F):除八個頂點處有晶格點外,在六個面的中央還有一個晶格點
  • 底心(A,B或C):除八個頂點處有晶格點外,在晶胞的一組平行面(A,B或C)的每個面中央還有一個晶格點

7種不同晶系與每種晶系的6種不同晶格共有7 × 6 = 42種組合,但是有些組合其實是相同的,都能組成14種布拉菲晶格。例如,單斜晶系的體心晶格可以通過單斜晶系的底心(C)晶格選擇不同的晶軸得到,所以這兩種其實是同一種;同樣,所有的底心(A)、底心(B)晶格都相當於底心(C)或簡單(P)晶格。因此,去除相同的組合,可以得到14種不同的布拉菲晶格,列於下表(晶格圖下方是代表該布拉菲晶格的皮尔逊符号,表中空白的格表示於已有的晶格重複):

晶系 点阵常数特征 布拉菲晶格
简单(P) 底心(C) 体心(I) 面心(F)
三斜晶系 a≠b≠c,α≠β≠γ≠90° Triclinic
單斜晶系 a≠b≠c,α=γ=90°≠β Monoclinic, simple Monoclinic, centered
斜方晶系
(正交晶系)
a≠b≠c,α=β=γ=90° Orthohombic, simple Orthohombic, base-centered Orthohombic, body-centered Orthohombic, face-centered
四方晶系 a=b≠c,α=β=γ=90° Tetragonal, simple Tetragonal, body-centered
三方晶系
(棱方晶系)
a=b=c,α=β=γ≠90° Rhombohedral
六方晶系 a=b≠c,α=β=90º,γ=120° Hexagonal
等軸晶系

(立方晶系)
a=b=c,α=β=γ=90° Cubic, simple Cubic, body-centered Cubic, face-centered

每一個單位晶格的體積可以由計算得知。其中,和是晶格向量。各種布拉菲晶格的體積如下:

晶系 体积
三斜晶系
單斜晶系
斜方晶系
四方晶系
三方晶系
六方晶系
等軸晶系

晶体学点群

熊夫利记号

熊夫利中,点群是用字母符号加上数字下标表示的。下面简述晶体学中使用的这种符号的意义[1]

  • Cn循环群)表示该群有一根n次旋转轴。CnhCn加上一个与旋转轴垂直的镜面(反映)对称元素。Cnv则是Cn加上n个与旋转轴平行的镜面对称元素。
  • S2n(源自德语Spiegel,意思是镜面)表示一根只含有2n旋转反映轴(简称映轴)。
  • Dn二面体群)表示这个群只有一根n次旋转轴和n根垂直于这根主轴的二重轴。Dnh是加上一个与n次旋转轴垂直的镜面。Dnd则是Dn是加上n个与n次旋转轴平行的镜面。
  • 字母T四面体)表示这个群有四面体的对称性。Td则包括了旋转反映操作,T群本身则不包含旋转反映操作,Th则是T群加上与旋转轴垂直的镜面。
  • 字母O八面体)表示该群具有八面体或者立方体的对称性,可能包括(Oh)或不包括(O)旋转反映操作。

根据晶体局限定理,在二维或三维空间中n的取值只有1、2、3、4和6。

n 1 2 3 4 6
Cn C1 C2 C3 C4 C6
Cnv C1v=C1h C2v C3v C4v C6v
Cnh C1h C2h C3h C4h C6h
Dn D1=C2 D2 D3 D4 D6
Dnh D1h=C2v D2h D3h D4h D6h
Dnd D1d=C2h D2d D3d D4d D6d
S2n S2 S4 S6 S8 S12

D4dD6d实际上是不存在的,因为它们分别包含了n=8和12的旋转反映轴。表格中剩下的27种点群与TTdThOOh共同组成32种晶体学点群。

赫尔曼–莫甘记号

赫尔曼–莫甘记号的一种简略形式广泛用于表示空间群,也用于描述晶体学点群。群的名称列在下表中;点群间相互之关系可见右图。

1 1
2 2m 222 m mm2 mmm
3 3 32 3m 3m
4 4 4m 422 4mm 42m 4mmm
6 6 6m 622 6mm 62m 6mmm
23 m3 432 43m m3m

不同记号关系

晶族 晶系 赫尔曼–莫甘
(完整记号)
赫尔曼–莫甘
(简写记号)
舒勃尼科夫[2] 熊夫利 轨形记号 考克斯特记号
三斜
1 1 C1 11 [ ]+ 1
1 1 Ci = S2 x [2+,2+] 2
单斜
2 2 C2 22 [2]+ 2
m m Cs = C1h * [ ] 2
2/m C2h 2* [2,2+] 4
正交
222 222 D2 = V 222 [2,2]+ 4
mm2 mm2 C2v *22 [2] 4
mmm D2h *222 [2,2] 8
四方
4 4 C4 44 [4]+ 4
4 4 S4 2x [2+,4+] 4
4/m C4h 4* [2,4+] 8
422 422 D4 422 [4,2]+ 8
4mm 4mm C4v *44 [4] 8
42m 42m D2d 2*2 [2+,4] 8
4/mmm D4h *422 [4,2] 16
六方
三方
3 3 C3 33 [3]+ 3
3 3 S6 = C3i 3x [2+,6+] 6
32 32 D3 322 [3,2]+ 6
3m 3m C3v *33 [3] 6
3 3m D3d 2*3 [2+,6] 12
六方
6 6 C6 66 [6]+ 6
6 6 C3h 3* [2,3+] 6
6/m C6h 6* [2,6+] 12
622 622 D6 622 [6,2]+ 12
6mm 6mm C6v *66 [6] 12
6m2 6m2 D3h *322 [3,2] 12
6/mmm D6h *622 [6,2] 24
立方
23 23 T 332 [3,3]+ 12
3 m3 Th 3*2 [3+,4] 24
432 432 O 432 [4,3]+ 24
43m 43m Td *332 [3,3] 24
3 m3m Oh *432 [4,3] 48

其它維度

二維

二維空間具有相同數量的晶系、晶族和晶格。在二維空間有四種晶系:斜晶系、矩晶系、方晶系、六方晶系。

四維

‌四維晶胞由四個邊長(a、b、c、d)和六個軸間角(α、β、γ、δ、ε、ζ)定義。以下晶格參數條件定義了23種晶系。

四維晶系
No. 晶系(1985年Whittaker命名[3] 邊長 軸間角
1 Hexaclinic abcd αβγδεζ ≠ 90°
2 Triclinic abcd αβγ ≠ 90°
δ = ε = ζ = 90°
3 Diclinic abcd α ≠ 90°
β = γ = δ = ε = 90°
ζ ≠ 90°
4 Monoclinic abcd α ≠ 90°
β = γ = δ = ε = ζ = 90°
5 Orthogonal abcd α = β = γ = δ = ε = ζ = 90°
6 Tetragonal monoclinic ab = cd α ≠ 90°
β = γ = δ = ε = ζ = 90°
7 Hexagonal monoclinic ab = cd α ≠ 90°
β = γ = δ = ε = 90°
ζ = 120°
8 Ditetragonal diclinic a = db = c α = ζ = 90°
β = ε ≠ 90°
γ ≠ 90°
δ = 180° − γ
9 Ditrigonal (dihexagonal) diclinic a = db = c α = ζ = 120°
β = ε ≠ 90°
γδ ≠ 90°
cos δ = cos β − cos γ
10 Tetragonal orthogonal ab = cd α = β = γ = δ = ε = ζ = 90°
11 Hexagonal orthogonal ab = cd α = β = γ = δ = ε = 90°, ζ = 120°
12 Ditetragonal monoclinic a = db = c α = γ = δ = ζ = 90°
β = ε ≠ 90°
13 Ditrigonal (dihexagonal) monoclinic a = db = c α = ζ = 120°
β = ε ≠ 90°
γ = δ ≠ 90°
cos γ = −1/2cos β
14 Ditetragonal orthogonal a = db = c α = β = γ = δ = ε = ζ = 90°
15 Hexagonal tetragonal a = db = c α = β = γ = δ = ε = 90°
ζ = 120°
16 Dihexagonal orthogonal a = db = c α = ζ = 120°
β = γ = δ = ε = 90°
17 Cubic orthogonal a = b = cd α = β = γ = δ = ε = ζ = 90°
18 Octagonal a = b = c = d α = γ = ζ ≠ 90°
β = ε = 90°
δ = 180° − α
19 Decagonal a = b = c = d α = γ = ζβ = δ = ε
cos β = −1/2 − cos α
20 Dodecagonal a = b = c = d α = ζ = 90°
β = ε = 120°
γ = δ ≠ 90°
21 Diisohexagonal orthogonal a = b = c = d α = ζ = 120°
β = γ = δ = ε = 90°
22 Icosagonal (icosahedral) a = b = c = d α = β = γ = δ = ε = ζ
cos α = −1/4
23 Hypercubic a = b = c = d α = β = γ = δ = ε = ζ = 90°

由1985年Whittaker命名[3]

名字幾乎與Brown等人[4]的命名相同,只有9、13、22名稱不同。括號是他們命的名。

四維晶族、晶系、晶格系之間的關係如下表所示。[3][4]

已隱藏部分未翻譯内容,歡迎參與翻譯
Enantiomorphic systems are marked with an asterisk. The number of enantiomorphic pairs is given in parentheses. Here the term "enantiomorphic" has a different meaning than in the table for three-dimensional crystal classes. The latter means, that enantiomorphic point groups describe chiral (enantiomorphic) structures. In the current table, "enantiomorphic" means that a group itself (considered as a geometric object) is enantiomorphic, like enantiomorphic pairs of three-dimensional space groups P31 and P32, P4122 and P4322. Starting from four-dimensional space, point groups also can be enantiomorphic in this sense.


四維晶體系統
晶族序 晶族(英文) 晶系(英文) 晶系序 點群 空間群 布拉菲晶格 晶格
I Hexaclinic 1 2 2 1 Hexaclinic P
II Triclinic 2 3 13 2 Triclinic P, S
III Diclinic 3 2 12 3 Diclinic P, S, D
IV Monoclinic 4 4 207 6 Monoclinic P, S, S, I, D, F
V Orthogonal Non-axial orthogonal 5 2 2 1 Orthogonal KU
112 8 Orthogonal P, S, I, Z, D, F, G, U
Axial orthogonal 6 3 887
VI Tetragonal monoclinic 7 7 88 2 Tetragonal monoclinic P, I
VII Hexagonal monoclinic Trigonal monoclinic 8 5 9 1 Hexagonal monoclinic R
15 1 Hexagonal monoclinic P
Hexagonal monoclinic 9 7 25
VIII Ditetragonal diclinic* 10 1 (+1) 1 (+1) 1 (+1) Ditetragonal diclinic P*
IX Ditrigonal diclinic* 11 2 (+2) 2 (+2) 1 (+1) Ditrigonal diclinic P*
X Tetragonal orthogonal Inverse tetragonal orthogonal 12 5 7 1 Tetragonal orthogonal KG
351 5 Tetragonal orthogonal P, S, I, Z, G
Proper tetragonal orthogonal 13 10 1312
XI Hexagonal orthogonal Trigonal orthogonal 14 10 81 2 Hexagonal orthogonal R, RS
150 2 Hexagonal orthogonal P, S
Hexagonal orthogonal 15 12 240
XII Ditetragonal monoclinic* 16 1 (+1) 6 (+6) 3 (+3) Ditetragonal monoclinic P*, S*, D*
XIII Ditrigonal monoclinic* 17 2 (+2) 5 (+5) 2 (+2) Ditrigonal monoclinic P*, RR*
XIV Ditetragonal orthogonal Crypto-ditetragonal orthogonal 18 5 10 1 Ditetragonal orthogonal D
165 (+2) 2 Ditetragonal orthogonal P, Z
Ditetragonal orthogonal 19 6 127
XV Hexagonal tetragonal 20 22 108 1 Hexagonal tetragonal P
XVI Dihexagonal orthogonal Crypto-ditrigonal orthogonal* 21 4 (+4) 5 (+5) 1 (+1) Dihexagonal orthogonal G*
5 (+5) 1 Dihexagonal orthogonal P
Dihexagonal orthogonal 23 11 20
Ditrigonal orthogonal 22 11 41
16 1 Dihexagonal orthogonal RR
XVII Cubic orthogonal Simple cubic orthogonal 24 5 9 1 Cubic orthogonal KU
96 5 Cubic orthogonal P, I, Z, F, U
Complex cubic orthogonal 25 11 366
XVIII Octagonal* 26 2 (+2) 3 (+3) 1 (+1) Octagonal P*
XIX Decagonal 27 4 5 1 Decagonal P
XX Dodecagonal* 28 2 (+2) 2 (+2) 1 (+1) Dodecagonal P*
XXI Diisohexagonal orthogonal Simple diisohexagonal orthogonal 29 9 (+2) 19 (+5) 1 Diisohexagonal orthogonal RR
19 (+3) 1 Diisohexagonal orthogonal P
Complex diisohexagonal orthogonal 30 13 (+8) 15 (+9)
XXII Icosagonal 31 7 20 2 Icosagonal P, SN
XXIII Hypercubic Octagonal hypercubic 32 21 (+8) 73 (+15) 1 Hypercubic P
107 (+28) 1 Hypercubic Z
Dodecagonal hypercubic 33 16 (+12) 25 (+20)
共計 23 (+6) 33 (+7) 227 (+44) 4783 (+111) 64 (+10) 33 (+7)


參見

參考資料

  • Cornelis Klein, Barbara Dutrow, 2007. Manual of Mineral Science, 23rd Edition
  1. ^ (简体中文)麦松威、周公度、李伟基. 高等无机结构化学 第二版. 北京: 北京大学出版社. 2006. ISBN 9787301047934. 
  2. ^ (英文) 存档副本. [2011-11-25]. (原始内容存档于2013-07-04). 
  3. ^ 3.0 3.1 3.2 Whittaker, E. J. W. An Atlas of Hyperstereograms of the Four-Dimensional Crystal Classes. 牛津: 牛津大學出版社. 1985. ISBN 978-0-19-854432-6. OCLC 638900498. 
  4. ^ 4.0 4.1 Brown, H.; Bülow, R.; Neubüser, J.; Wondratschek, H.; Zassenhaus, H. Crystallographic Groups of Four-Dimensional Space. 纽约: Wiley. 1978. ISBN 978-0-471-03095-9. OCLC 939898594. 

外部連結

Read other articles:

American physicist This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Stephen Bernard Libby – news · newspapers · books · scholar · JSTOR (December 2019) (Learn how and when to remove this template me…

Miss Teen USALogo Miss Teen USATanggal pendirian1983TipeKontes kecantikanKantor pusatNew YorkLokasi Amerika SerikatBahasa resmi Bahasa InggrisDirektur NasionalCrystle StewartOrganisasi indukMiss USAAfiliasiMicrosoftSony Interactive EntertainmentSitus webmissteenusa.com Miss Teen USA adalah kontes kecantikan dijalankan oleh Organisasi Miss Universe untuk remaja perempuan berusia 14–19 tahun. Tidak seperti kontes saudaranya Miss Universe dan Miss USA, yang disiarkan di Fox, kontes ini disia…

1986 fantasy comedy film SuperfantagenioDirected byBruno CorbucciWritten byMario Amendola, Bruno Corbucci, Elisa BrigantiProduced byYoram GlobusMenahem GolanStarringBud SpencerLuca VenantiniJanet AgrenJulian VoloshinDistributed byCannon FilmsRelease date December 25, 1986 (1986-12-25) Running time96 minutesCountriesItalyUnited StatesLanguagesItalianEnglish Superfantagenio (also known as Aladdin) is a 1986 Italian/American family comedy film starring Bud Spencer as the Genie and Lu…

This is a list of newspapers in Rhode Island. Daily newspapers The Boston Globe (Rhode Island) of Boston, owned by Boston Globe Media Partners, via their Providence-based bureau, covering all of Rhode Island The Brown Daily Herald of Providence, owned independently, covering Brown University The Call of Woonsocket, owned by RISN Operations, covering northern Providence County Kent County Daily Times of West Warwick, owned by RISN Operations, covering most of Kent County The Newport Daily News of…

Radio station in Farmington, MissouriKTJJFarmington, MissouriBroadcast areaSte. GenevieveSt. LouisCape GirardeauFrequency98.5 MHzBrandingJ98 The BootProgrammingFormatCountry musicAffiliationsABC News RadioPremiere NetworksWestwood OneOwnershipOwnerAlpha Media(Alpha Media Licensee LLC)Sister stationsKREI, KJFFTechnical informationFacility ID35533ClassCERP100,000 wattsHAAT317 meters (1,040 ft)Transmitter coordinates37°43′7.00″N 90°33′1.00″W / 37.7186111°N 90.5502778…

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Птиц…

City in Razavi Khorasan province, Iran For the administrative divisions, see Golmakan District and Golmakan Rural District. City in Razavi Khorasan, IranGolmakan Persian: گلمكانCityGolmakanCoordinates: 36°28′56″N 59°09′33″E / 36.48222°N 59.15917°E / 36.48222; 59.15917[1]CountryIranProvinceRazavi KhorasanCountyGolbaharDistrictGolmakanPopulation (2016)[2] • Total8,373Time zoneUTC+3:30 (IRST) Golmakan (Persian: گلمكان,…

ChodkiewiczAlternative name(s)Kościesza odm. ChodkiewiczFamilies1 names Chodkiewicz (Chodźkiewicz) DivisionsGmina Gródek, Gródek Chodkiewicz (Gryf z Mieczem) is a Polish coat of arms. It was used by the Chodkiewicz family in the times of the Polish–Lithuanian Commonwealth. A variant of the Kościesza with the Gryf coat of arms and the notable longer family line as well as much bigger family than shown here. Notable bearers Notable bearers of this coat of arms include: Chodkiewicz family Ch…

ロバート・デ・ニーロRobert De Niro 2011年のデ・ニーロ生年月日 (1943-08-17) 1943年8月17日(80歳)出生地 アメリカ合衆国・ニューヨーク州ニューヨーク市身長 177 cm職業 俳優、映画監督、映画プロデューサージャンル 映画、テレビドラマ活動期間 1963年 -配偶者 ダイアン・アボット(1976年 - 1988年)グレイス・ハイタワー(1997年 - )主な作品 『ミーン・ストリート』(1973年)『…

Group D of UEFA Euro 2012 began on 11 June 2012 and ended on 19 June 2012. The pool was made up of Ukraine, Sweden, France and England. The top two teams, England and France, progressed to the quarter-finals to play Italy and Spain respectively, while Ukraine and Sweden were eliminated from the tournament. On the second matchday, on 15 June, the match between Ukraine and France that began at 19:00 local time was interrupted by heavy rainfall and a thunderstorm. The conditions forced the referee …

Pour les articles homonymes, voir Cardinale (homonymie). Claudia Cardinale Claudia Cardinale, durant le tournage du filmLa Panthère rose (1963). Données clés Nom de naissance Claude Joséphine Rose Cardinale Surnom CC Naissance 15 avril 1938 (86 ans)Tunis (Protectorat français de Tunisie) Nationalité Italienne Profession ActriceMannequin Films notables CartoucheHuit et demiLe GuépardLa Mafia fait la loiIl était une fois dans l'Ouest Site internet official-claudiacardinale.com modifie…

Rapid transit line in Metro Vancouver, Canada Canada Line Canada Line train pulling into Marine Drive stationOverviewOwnerTransLink, InTransitBCLocaleMetro Vancouver, British ColumbiaTerminiWaterfrontYVR–Airport & Richmond–BrighouseStations16 (1 under construction)Websitethecanadaline.comServiceTypeRapid transitSystemSkyTrainOperator(s)ProTrans BCRolling stockRotem EMU, 2 cars per trainsetDaily ridership94,000 (2022)[1]HistoryOpenedAugust 17, 2009; 14 years ago …

State park in California, United States Morro Strand State BeachShow map of CaliforniaShow map of the United StatesLocationSan Luis Obispo County, CaliforniaNearest cityMorro BayCoordinates35°22′33″N 120°51′47″W / 35.37583°N 120.86306°W / 35.37583; -120.86306Governing bodyCalifornia Department of Parks and Recreation Orca breaching, just offshore from Morro Strand, May 8, 2014. North Morro Bay town in background Morro Strand State Beach (formerly Ata…

ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Раннее христианство Гностическое христианство Вселенские соборы Ни…

Robert Kurrle Adossé à la caméra (photo dédicacée, 1916) Données clés Nom de naissance Robert Bard Kurrle Naissance 2 février 1890Port HuenemeCalifornie, États-Unis Nationalité Américaine Décès 27 octobre 1932 (à 42 ans)Los Angeles (Hollywood)Californie, États-Unis Profession Directeur de la photographie Films notables RamonaFaiblesse humaineLes Quatre Plumes blanchesVoyage sans retour modifier Sur le tournage de Ramona (1928), avec Dolores del Río et l'aviateur Charles Lipp…

Titan bulan Saturnus dalam warna alami Kolonisasi angkasa Planet Dalam Lagrange Merkurius Venus Bumi Bulan Mars Ceres Planet Luar Jupiter Europa Kalisto Saturnus Titan Uranus Objek trans-Neptunus lbs Menurut data Cassini dari 2008, Titan memiliki ratusan kali hidrokarbon cair lebih banyak daripada semua cadangan minyak dan gas alam yang diketahui di Bumi. Hidrokarbon ini berupa hujan dari langit dan terkumpul dalam endapan besar yang membentuk danau dan bukit pasir.[1] Titan hanya tertut…

Japanese weekly news magazine Shūkan ShinchōCover of the first issue of Shūkan Shinchō (19 February 1956)CategoriesNews magazineFrequencyWeeklyFounded1956First issue19 February 1956CompanyShincho-shaCountryJapanBased inTokyoLanguageJapaneseWebsiteShukan Shincho Shūkan Shinchō (週刊新潮) is a Japanese conservative[1][2] weekly news magazine based in Tokyo, Japan. It is considered one of the most influential weekly magazines in the country[2] and is the first Japa…

American politician (1853–1918) Charles W. FultonUnited States Senatorfrom OregonIn officeMarch 4, 1903 – March 3, 1909Preceded byJoseph SimonSucceeded byGeorge Earle ChamberlainPresident of the Oregon State SenateIn office1893–18941901–1902Preceded byJoseph SimonT. C. TaylorSucceeded byJoseph SimonGeorge C. BrownellOregon State SenatorIn office1878–18811891–18951898–1903ConstituencyClatsop, Columbia, and Tillamook counties Personal detailsBorn(1853-08-24)Au…

FLSW redirects here. For the airport with ICAO code FLSW, see Solwezi Airport. For the reserve unit of the U.S. Navy, see Fleet Logistics Support Wing. Learned society headquartered in Cardiff, Wales The Learned Society of WalesCymdeithas Ddysgedig CymruFormation25 May 2010; 13 years ago (25 May 2010)TypeLearned Society; National AcademyRegistration no.1168622Legal statusCharityPurposeTo advance education, learning, academic study and knowledge, so as to contribute to scientifi…

 烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总理…

Kembali kehalaman sebelumnya