Often, thiocarbonyldiimidazole is used instead of thiophosgene as shown above, since thiophosgene has a similar toxicity profile as phosgene, whereas thiocarbonyldiimidazole is a much safer alternative.
Mechanism
The reaction mechanism involves the formation of a cyclic thiocarbonate from the diol and thiophosgene. The second step involves treatment with trimethyl phosphite, which attacks the sulfur atom, producing S=P(OMe)3 (driven by the formation of a strong P=S double bond) and leaving a carbene.[6] This carbene collapses with loss of carbon dioxide to give the olefin.
An alternative mechanism does not involve a free carbene intermediate, but rather involves attack of the carbanion by a second molecule of trimethylphosphite with concomitant cleavage of the sulfur-carbon bond. The phosphorus stabilized carbanion then undergoes an elimination to give the alkene, along with an acyl phosphite, which then decarboxylates.
The Corey-Winter olefination is a stereospecific reaction:[1] a trans-diol gives a trans-alkene, while a cis-diol gives a cis-alkene as the product. For instance, cis- and trans-1,2-cyclodecanediol gives the respective cis- and trans-cyclodecene.
^Corey, E. J.; Carey, F. A.; Winter, R. A. E. (1965). "Stereospecific Syntheses of Olefins from 1,2-Thionocarbonates and 1,2-Trithiocarbonates. trans-Cycloheptene". J. Am. Chem. Soc. 87 (4): 934–935. doi:10.1021/ja01082a057.
^Crank, G.; Eastwood, F. W. (1964). "Derivatives of orthoacids. II. The preparation of olefins from 1,2-diols". Australian Journal of Chemistry. 17 (12): 1392–1398. doi:10.1071/CH9641392.