Ciąg geometryczny, postęp geometryczny – ciąg liczbowy – skończony bądź nie – w którym każdy wyraz oprócz początkowego jest iloczynem wyrazu poprzedniego i pewnej stałej nazywanej ilorazem ciągu[1]. Czasem zakłada się dodatkowo, że liczba ta jest różna od zera[1].
Formalnie: niech lub Ciąg liczbowy nazywa się geometrycznym, jeśli[2]:
Ciąg geometryczny można traktować jako mnożeniowy (multyplikatywny) odpowiednik ciągu arytmetycznego.
Przykłady
Ciąg (1, 3, 9, 27, 81, ...) ma iloraz równy 3.
Ciąg ma iloraz równy
Ciąg (5, 0, 0, 0, 0, ...) ma iloraz równy 0.
Ciąg (0, 0, 0, 0, 0, ...) nie ma jednoznacznego ilorazu. Założenie, że iloraz jest niezerowy, nie wyklucza tego przykładu. Mimo to ciąg zerowy bywa wykluczany z grona geometrycznych przez pewne jeszcze węższe definicje, podane dalej.
Definicje
Z początkowej, rekurencyjnej definicji wynika wzór: Oznacza to, że przy dodatnich ilorazach ciąg geometryczny jest przykładem funkcji wykładniczej.
Ciąg geometryczny wyróżnia się stałym stosunkiem wyrazów, co tłumaczy nazwę liczby jeśli to Ta definicja pociąga za sobą ponieważ zerowy iloraz oznaczałby zerowanie się licznika.
Jeśli są trzema kolejnymi wyrazami ciągu geometrycznego to prawdziwy jest wzór[2]: Wynika stąd, że jeśli wszystkie wyrazy są nieujemne, to każdy niekrańcowy wyraz ciągu geometrycznego jest średnią geometryczną wyrazów sąsiednich.