Liczba doskonała – liczba naturalna, która jest sumą wszystkich swych naturalnych dzielników właściwych (to znaczy od niej mniejszych)[1]. Korzystając z pojęcia funkcji σ, można liczby doskonałe definiować jako te, dla których zachodzi warunek:
Najmniejszą liczbą doskonałą jest , ponieważ Następną jest ponieważ
Kolejnymi są i
Największą znaną obecnie (7 grudnia 2018) liczbą doskonałą jest liczy ona 49 724 095 cyfr w rozwinięciu dziesiętnym[2].
Wszystkie znane liczby doskonałe są parzyste. Nie udało się dotąd znaleźć żadnej liczby doskonałej nieparzystej, ani dowodu, że liczby takie nie istnieją.
Metoda Euklidesa znajdowania liczb doskonałych
W IX księdze Elementów, najstarszym piśmie opisującym liczby doskonałe, Euklides podał sposób znajdowania liczb doskonałych parzystych[3]:
należy obliczać sumy kolejnych potęg dwójki Jeżeli któraś z otrzymanych sum okaże się liczbą pierwszą, należy pomnożyć ją przez ostatni składnik i otrzymamy liczbę doskonałą.
Sposób podany przez Euklidesa każe badać kolejno sumy:
Są to sumy ciągu geometrycznego o ilorazie więc mają one postać Jeśli któraś z tych liczb okaże się liczbą pierwszą, to jest liczbą doskonałą.
Własności
Leonhard Euler udowodnił, że każda liczba doskonała parzysta ma postać gdzie jest liczbą pierwszą (nietrudno pokazać, że wtedy również jest liczbą pierwszą) – daje to wzajemnie jednoznaczną odpowiedniość liczb doskonałych parzystych z liczbami pierwszymi Mersenne’a.
Euler udowodnił, że każda liczba doskonała nieparzysta musi być postaci gdzie jest liczbą pierwszą postaci Wiadomo też, że jeśli liczba taka istnieje, to musi być większa od
↑H.N.H.N.JahnkeH.N.H.N., A history of analysis, Providence, RI: American Mathematical Society, 2003, s. 3-4, ISBN 0-8218-2623-9, OCLC51607350 [dostęp 2021-07-19].