Liczby gładkie są powiązane z algorytmami szybkiej transformacji Fouriera (FFT), takimi jak algorytm Cooleya-Tukeya. Algorytmy te operują rekurencyjnie, wyrażając dyskretną transformatę Fouriera (DFT) ciągu o złożonej długości za pomocą DFT ciągów o długościach i . Jeśli długość wyjściowego ciągu jest liczbą -gładką dla małego , przypadkami bazowymi tej rekurencji są problemy obliczenia DFT o długościach wyrażonych małymi liczbami pierwszymi, dla których istnieją wydajne algorytmy[5]. Dla dużych liczb pierwszych konieczne jest użycie mniej efektywnych algorytmów, takich jak algorytm Bluesteina.
Liczby gładkie odgrywają istotną rolę w problemach informatycznych z dziedziny teorii liczb, które związane są ściśle z kryptografią. Najlepsze znane algorytmy faktoryzacji, takie jak algorytm Dixona, sito kwadratowe czy GNFS, wykorzystują liczby gładkie. Wyznaczenie logarytmu dyskretnego staje się łatwiejsze, gdy rząd grupy jest liczbą gładką (algorytm Pohliga–Hellmana)[4]. Co więcej, termin „liczba gładka” został prawdopodobnie użyty po raz pierwszy w kontekście znajdowania logarytmu dyskretnego w , gdy liczba logarytmowana jest -gładka i znane są wartości logarytmu dyskretnego dla jej dzielników pierwszych[3].
Na wiedzy o liczbach gładkich oparta jest funkcja skrótu Very Smooth Hash (VSH), której odporność na kolizje (trudność wygenerowania dwóch wiadomości o takim samym skrócie) wynika z trudności znalezienia pierwiastka kwadratowego z liczby gładkiej modulo . Metoda ta jest wydajniejsza i bardziej praktyczna w porównaniu do wielu funkcji skrótu, których odporność na kolizje można ściśle wykazać[4][6].
Rozmieszczenie
Niech będzie liczbą liczb -gładkich nie większych od . W 1930 roku Dickman zaprezentował heurystyczny dowód, że
dla ,
gdzie jest funkcją Dickmana – unikalnym ciągłym rozwiązaniem równania różniczkowego przy założeniu, że dla [7][8]. Na podstawie późniejszych wyników de Bruijina i Hildebranda wiadomo, że dla równość
zachodzi, gdy
.
Ponadto wspomniane ograniczenie jest prawdziwe dla wszystkich
↑Donald ErvinD.E.KnuthDonald ErvinD.E., The art of computer programming. Volume 2: Seminumerical algorithms / Donald E. Knuth (Stanford University), Third edition, forthy-first printing, Addison-Wesley, 2021, s. 382-383, ISBN 978-0-201-89684-8 [dostęp 2024-02-18](ang.).