広く使える情報量規準広く使える情報量規準(ひろくつかえるじようほうりょうきじゅん、英: Widely applicable information criterion、略称: WAIC)または渡辺・赤池情報量基準(Watanabe–Akaike information criterion、WAIC)は、特異的統計モデルに対する赤池情報量基準 (AIC) の一般化版である[1]。2009年に渡辺澄夫が発表した[2]。 広く使えるベイズ情報量規準 (WBIC; Widely applicable Bayesian information criterion) は、特異的統計モデルに対するベイズ情報量規準 (BIC) の一般化版[3]。2013年に渡辺澄夫が発表した。WBIC は、サンプルサイズが n の時に、逆温度が 1/log n の事後分布に対する平均対数尤度関数。 WAICもWBICも真の分布に関する情報無しに数値的に計算できる。 その利点は、EQUとDEFの分析結果を同時に出すことを避ける点にある。二群の標準偏差が類似しているときには事後標準偏差が小さくなるので、EQUの方が適している一方で、それぞれの標準偏差が大きく異なるときにはDEFの方が適する。WAICによるモデル選択をすれば、将来のデータx*を予測することができ、どちらがよりデータとして安定しているのかを先回りして調べることができる。なおWAICの場合にはx*の値が小さいほうが予測力は高まるとされている。 参考文献
外部リンク渡辺澄夫による解説
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve