標準誤差
標準誤差(ひょうじゅんごさ、英: standard error; SE)は、母集団からある数の標本を選ぶとき、選ぶ組み合わせに依って統計量がどの程度ばらつくかを、全ての組み合わせについての標準偏差で表したものをいう。 統計量を指定せずに単に「標準誤差」と言った場合、標本平均の標準誤差(英: standard error of the mean; SEM)のことを普通は指す。以下ではこれについて述べる。 定義標準偏差σ、要素数Nの母集団からn個の標本を抽出するとき、標準誤差は次の式により推定される。
標準偏差σを標本データから計算した標準偏差sで推定する場合は
となる。 Nが十分大きい場合には または としてよい。 この式で重要なのは、標準誤差は抽出する標本サイズの平方根に反比例するという点である。つまり、例えば標本サイズを4倍にすると標準誤差を半分にできる。統計調査を計画する際に、費用や手間をある範囲内に収めた上で誤差を最小にしたい場合が多い。これらの条件の関係を判断するのに上の関係式が重要となる。 日本工業規格では、「推定量の標準偏差」と定義している[1]。 信頼区間分布が正規分布に従う場合、95%信頼区間は、約平均±2×標準誤差となる。 分布が正規分布に従う場合、99%信頼区間は、約平均±3×標準誤差となる。 脚注
参考文献
関連項目 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve