外れ値外れ値(はずれち、英: outlier)は、統計学において、他の値から大きく外れた値のこと。測定ミス・記録ミス等に起因する異常値とは概念的には異なるが、実用上は区別できないこともある。ロバスト統計では、外れ値に対しての頑健性確保を重視する。 英語のoutlierには「他より著しく異なるため一般的結論を導けない人や物や事実」を指す意味もある[1][2]。 検定外れ値かどうか検定したい標本について、偏差を不偏標準偏差で割った検定統計量 を求め(x1 は標本値、μ は平均、σ は標準偏差)、この値(両側検定をする場合はこの絶対値)が有意点より大きいかどうかで検定する。 簡単な方法では、2または3を有意点とする。つまり、μ ± 2–3 σ の外なら外れ値とする。 スミルノフ・グラブス検定より精密には、正規分布を仮定して、スミルノフ・グラブス (Smirnov‐Grubbs) 検定を使う。サンプルサイズを n、所要の有意水準を α、自由度 n - 2 のt分布の α / n × 100 パーセンタイルを t として、 を有意点とする。平均値から最も外れている1つのデータのみを検定し、それが外れ値と判定されたら、それを除外した n - 1 のサンプルサイズにおいて最も外れているデータを検定し、以下、外れ値が検出されなくなるまでこれを繰り返す。 トンプソン検定トンプソン (Thompson) 検定では、 を使う。計算式の都合上、スミルノフ・グラブス検定とは逆に、標本値の検定統計量 τ1 から t1 を経て有意水準 α1 を求めることが多い。n が十分大きければスミルノフ・グラブス検定と同じ結果になる。 脚注
関連項目外部リンク |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve