Fransium tak pernah terlihat dapat jumlah yang besar. Karena penampilan umum unsur-unsur lain dalam kolom tabel periodiknya, fransium dianggap sebagai logam yang sangat reaktif, jika cukup dikumpulkan bersama untuk dapat dilihat sebagai padatan atau cairan curah. Mendapatkan sampel seperti itu sangatlah tidak mungkin, karena panas peluruhan yang ekstrem akibat waktu paruhnya yang singkat akan segera menguapkan kuantitas fransium yang dapat dilihat.
Fransium ditemukan oleh Marguerite Perey[4] di Prancis (yang menjadi asal nama unsur ini) pada tahun 1939.[5] Sebelum penemuannya, ia disebut sebagai eka-sesium atau ekasesium karena dugaan keberadaannya berada di bawah sesium dalam tabel periodik. Ia adalah unsur terakhir yang pertama kali ditemukan di alam, bukan melalui sintesis.[note 1] Di luar laboratorium, fransium sangatlah langka, dengan jumlah jejak yang ditemukan dalam bijih uranium, di mana isotop fransium-223 (dalam keluarga uranium-235) terus terbentuk dan meluruh. Sesedikit 200–500 g ada pada setiap waktu di seluruh kerak Bumi; selain fransium-223 dan fransium-221, isotop lainnya seluruhnya sintetis. Jumlah fransium terbesar yang diproduksi di laboratorium adalah sekelompok fransium dengan lebih dari 300.000 atom.[6]
Karakteristik
Fransium adalah salah satu unsur alami yang paling tak stabil: isotopnya yang berumur paling panjang, fransium-223, memiliki waktu paruh hanya 22 menit. Satu-satunya unsur yang sebanding degannya adalah astatin, di mana isotop alaminya yang paling stabil, astatin-219 (turunan alfa fransium-223), memiliki waktu paruh 56 detik, meskipun astatin-210 yang sintetis jauh lebih panjang umurnya dengan waktu paruh dari 8,1 jam.[7] Semua isotop fransium meluruh menjadi astatin, radium, atau radon.[7] Fransium-223 juga memiliki waktu paruh yang lebih pendek daripada isotop dengan umur terpanjang dari setiap unsur sintetis hingga dan termasuk unsur 105, dubnium.[8]
Fransium adalah logam alkali yang sifat kimianya sebagian besar mirip dengan sesium.[8] Sebuah unsur berat dengan satu elektron valensi,[9] ia memiliki berat ekuivalen tertinggi dari semua unsur.[8] Fransium cair—jika dibuat—seharusnya memiliki tegangan permukaan 0,05092 N/m pada titik leburnya.[10] Titik lebur fransium diperkirakan sekitar 80 °C (176 °F);[2] nilai 27 °C (81 °F) juga sering ditemui.[8] Titik leburnya tidaklah pasti karena kelangkaan dan radioaktivitasnya yang ekstrem; ekstrapolasi yang berbeda berdasarkan metode Dmitri Mendeleev menghasilkan nilai 20 ± 15 °C (68 ± 27 °F). Perkiraan titik didih 620 °C (1.148 °F) juga tidaklah pasti; perkiraan 598 °C (1.108 °F) dan 677 °C (1.251 °F), serta ekstrapolasi dari metode Mendeleev sebesar 640 °C (1.184 °F), juga telah disarankan.[10][2] Massa jenis fransium diperkirakan sekitar 2,48 g/cm3 (metode Mendeleev mengekstrapolasi 2,4 g/cm3).[2]
Linus Pauling memperkirakan keelektronegatifan fransium sebesar 0,7 pada skala Pauling, sama dengan sesium;[11] nilai sesium sejak itu disempurnakan menjadi 0,79, tetapi tidak ada data eksperimen yang memungkinkan penyempurnaan nilai fransium.[12] Fransium memiliki energi ionisasi yang sedikit lebih tinggi daripada sesium,[13] 392,811(4) kJ/mol dibandingkan dengan 375,7041(2) kJ/mol untuk sesium, seperti yang diperkirakan dari efek relativistik, dan ini menyiratkan bahwa sesium lebih sedikit elektronegatif dari keduanya. Fransium juga seharusnya memiliki afinitas elektron yang lebih tinggi daripada sesium dan ion Fr− seharusnya lebih terpolarisasi daripada ion Cs−.[14]
Senyawa
Karena fransium sangat tidak stabil, hanya sedikit dari garamnya yang telah diketahui. Fransium berkopresipitasi dengan beberapa garam sesium, seperti sesium perklorat, yang menghasilkan fransium perklorat dalam jumlah kecil. Kopresipitasi ini dapat digunakan untuk mengisolasi fransium, dengan mengadaptasi metode kopresipitasi radiosesium dari Lawrence E. Glendenin dan C. M. Nelson. Ia juga akan berkopresipitasi dengan banyak garam sesium lainnya, termasuk iodat, pikrat, tartrat (juga rubidium tartrat), kloroplatinat, dan silikowolframat. Ia juga berkopresipitasi dengan asam silikowolframat, serta dengan asam perklorat, tanpa logam alkali lain sebagai pembawa, yang mengarah pada metode pemisahan lainnya.[15][16]
Fransium perklorat
Fransium perklorat dihasilkan oleh reaksi antara fransium klorida dan natrium perklorat. Fransium perklorat berkopresipitasi dengan sesium perklorat.[16] Kopresipitasi ini dapat digunakan untuk mengisolasi fransium, dengan mengadaptasi metode kopresipitasi radiosesium dari Lawrence E. Glendenin dan C. M. Nelson. Namun, metode ini tidak dapat diandalkan dalam memisahkan talium, yang juga berkopresipitasi dengan sesium.[16]Entropi fransium perklorat diperkirakan sebesar 42,7 e.u (178,7 J mol−1 K−1).[2]
Fransium halida
Semua fransium halida dapat larut dalam air dan diperkirakan menjadi padatan berwarna putih. Mereka diperkirakan akan terproduksi oleh reaksi halogen yang sesuai. Misalnya, fransium klorida akan dihasilkan dari reaksi antara fransium dan klorin. Fransium klorida telah dipelajari sebagai jalur untuk memisahkan fransium dari unsur lain, dengan menggunakan tekanan uap yang tinggi dari senyawa tersebut, meskipun fransium fluorida akan memiliki tekanan uap yang lebih tinggi.[2]
Senyawa lainnya
Fransium nitrat, sulfat, hidroksida, karbonat, asetat, dan oksalat, semuanya larut dalam air, sedangkan iodat, pikrat, tartrat, kloroplatinat, dan silikowolframat tidak larut. Ketidaklarutan senyawa ini digunakan untuk mengekstraksi fransium dari produk radioaktif lainnya, seperti zirkonium, niobium, molibdenum, timah, dan antimon, dengan metode yang disebutkan pada bagian di atas.[2] Molekul CsFr diperkirakan memiliki fransium di ujung negatif dipol, tidak seperti semua molekul logam alkali heterodiatomik yang diketahui. Fransium superoksida (FrO2) diperkirakan memiliki karakter yang lebih kovalen daripada kongenernya yang lebih ringan; ini dikaitkan dengan elektron 6p dalam fransium yang lebih terlibat dalam ikatan fransium–oksigen.[14] Destabilisasi relativistik spinor 6p3/2 dapat membuat senyawa fransium dalam keadaan oksidasi lebih tinggi dari +1, seperti [FrVF6]−; tetapi ini belum dikonfirmasi secara eksperimental.[17]
Satu-satunya garam rangkap fransium yang diketahui memiliki rumus Fr9Bi2I9.
Ada 34 isotop fransium yang diketahui dengan rentang massa atom mulai dari 199 hingga 232.[18] Fransium memiliki tujuh isomer nuklirmetastabil.[8] Fransium-223 dan fransium-221 adalah dua isotop fransium yang terdapat di alam, dengan yang pertama memiliki kelimpahan yang lebih besar.[19]
Fransium-223 adalah isotop yang paling stabil, dengan waktu paruh 21,8 menit,[8] dan sangat tidak mungkin bahwa isotop fransium dengan waktu paruh lebih lama akan ditemukan atau disintesis.[20] Fransium-223 adalah produk kelima dari deret peluruhan uranium-235 sebagai produk isotop aktinium-227; torium-227 adalah produk yang lebih umum.[21] Fransium-223 kemudian meluruh menjadi radium-223 melalui peluruhan beta (energi peluruhan 1,149 MeV), dengan jalur peluruhan alfa minor (0,006%) menjadi astatin-219 (energi peluruhan 5,4 MeV).[22]
Fransium-221 memiliki waktu paruh 4,8 menit.[8] Ia merupakan produk kesembilan dari deret peluruhan neptunium sebagai isotop turunan dari aktinium-225.[21] Fransium-221 kemudian meluruh menjadi astatin-217 melalui peluruhan alfa (energi peluruhan 6,457 MeV).[8] Meskipun semua 237Np primordial telah punah, deret peluruhan neptunium terus ada secara alami dalam jejak-jejak kecil karena reaksi knockout (n,2n) dalam 238U alami.[23]
Isotop keadaan dasar yang paling tak stabil adalah fransium-215, dengan waktu paruh 0,12 μdtk: ia mengalami peluruhan alfa 9,54 MeV menjadi astatin-211.[8]Isomer metastabilnya, fransium-215m, masih kurang stabil, dengan waktu paruh hanya 3,5 ndtk.[24]
Aplikasi
Karena ketidakstabilan dan kelangkaannya, tak ada aplikasi komersial untuk fransium.[25][26][27][21] Ia telah digunakan untuk tujuan penelitian di bidang kimia[28]
dan struktur atom. Penggunaannya sebagai bantuan diagnostik potensial untuk berbagai jenis kanker juga telah dieksplorasi,[7] namun aplikasi ini dianggap tidak praktis.[26]
Kemampuan fransium untuk disintesis, dijebak, dan didinginkan, bersama dengan struktur atomnya yang relatif sederhana, menjadikannya sebagai subjek eksperimen spektroskopi khusus. Eksperimen ini telah menghasilkan informasi yang lebih spesifik mengenai tingkat energi dan konstanta kopling antara partikel subatomik.[29] Studi tentang cahaya yang dipancarkan oleh ion fransium-210 yang terperangkap laser telah memberikan data akurat tentang transisi antara tingkat energi atom yang cukup mirip dengan yang diprediksi oleh teori kuantum.[30]
Sejarah
Pada awal tahun 1870, para kimiawan berpikir bahwa seharusnya ada logam alkali setelah sesium, dengan nomor atom 87.[7] Ia kemudian disebut dengan nama sementara eka-sesium.[31] Tim peneliti berusaha untuk menemukan dan mengisolasi unsur yang hilang ini, dan setidaknya empat klaim palsu dibuat bahwa unsur tersebut telah ditemukan sebelum penemuan otentik dibuat.
Penemuan yang salah dan tak lengkap
Pada tahun 1914, Stefan Meyer, Viktor F. Hess, dan Friedrich Paneth (bekerja di Wina) melakukan pengukuran radiasi alfa dari berbagai zat, termasuk 227Ac. Mereka mengamati kemungkinan cabang alfa kecil dari nuklida ini, meskipun pekerjaan lanjutan tidak dapat dilakukan karena pecahnya Perang Dunia I. Pengamatan mereka tidaklah tepat dan masih belum cukup pasti bagi mereka untuk mengumumkan penemuan unsur 87, meskipun kemungkinan besar mereka benar-benar mengamati peluruhan 227Ac menjadi 223Fr.[31]
Kimiawan Soviet Dmitry Dobroserdov adalah ilmuwan pertama yang mengklaim telah menemukan eka-sesium, atau fransium. Pada tahun 1925, ia mengamati radioaktivitas lemah dalam sampel kalium, logam alkali lain, dan secara keliru menyimpulkan bahwa eka-sesium telah mengontaminasi sampelnya (radioaktivitas dari sampel berasal dari radioisotop kalium alami, kalium-40).[32] Dia kemudian menerbitkan sebuah tesis tentang ramalannya mengenai sifat-sifat eka-sesium, di mana dia menamai unsur ini russium, dari nama negara asalnya.[33] Tak lama kemudian, Dobroserdov mulai fokus pada karir mengajarnya di Institut Politeknik Odessa, dan dia tidak mendalami unsur ini lebih jauh.[32]
Tahun berikutnya, kimiawan Inggris Gerald J. F. Druce dan Frederick H. Loring menganalisis foto sinar-X dari mangan(II) sulfat.[33] Mereka mengamati garis spektrum yang mereka duga berasal dari eka-sesium. Mereka mengumumkan penemuan unsur 87 dan mengusulkan nama alkalinium, karena ia merupakan logam alkali terberat.[32]
Pada tahun 1930, Fred Allison dari Institut Politeknik Alabama mengklaim telah menemukan unsur 87 (dan juga 85) ketika menganalisis polusit dan lepidolit menggunakan mesin magneto-optis miliknya. Allison meminta agar unsur ini dinamai virginium dari negara bagian asalnya Virginia, bersama dengan simbol Vi dan Vm.[33][34] Pada tahun 1934, H.G. MacPherson dari UC Berkeley membantah keefektifan perangkat Allison dan validitas penemuannya.[35]
Pada tahun 1936, fisikawan Romania Horia Hulubei dan koleganya dari Prancis Yvette Cauchois juga menganalisis polusit, kali ini menggunakan peralatan sinar-X beresolusi tinggi.[32] Mereka mengamati beberapa garis emisi lemah, yang mereka duga berasal dari unsur 87. Hulubei dan Cauchois melaporkan penemuan mereka dan mengusulkan nama moldavium, bersama dengan lambang Ml, dari Moldavia, provinsi Rumania tempat lahirnya Hulubei.[33] Pada tahun 1937, karya Hulubei dikritik oleh fisikawan Amerika F. H. Hirsh Jr., yang menolak metode penelitian Hulubei. Hirsh yakin bahwa eka-sesium tak akan ditemukan di alam, dan bahwa Hulubei malah mengamati garis sinar-X raksa atau bismut. Hulubei bersikeras bahwa alat dan metode sinar-X miliknya terlalu akurat untuk membuat kesalahan seperti itu. Karena itu, Jean Baptiste Perrin, pemenang Penghargaan Nobel dan mentor Hulubei, mendukung moldavium sebagai eka-sesium yang sebenarnya daripada fransium yang baru ditemukan oleh Marguerite Perey. Perey bersusah payah untuk menjadi akurat dan terperinci dalam kritiknya terhadap karya Hulubei, dan akhirnya dia dianggap sebagai satu-satunya penemu unsur 87.[32] Semua penemuan unsur 87 yang diakui sebelumnya dikesampingkan karena waktu paruh fransium yang sangat terbatas.[33]
Analisis Perey
Eka-sesium ditemukan pada 7 Januari 1939, oleh Marguerite Perey dari Institut Curie di Paris,[31] ketika dia memurnikan sampel aktinium-227 yang dilaporkan memiliki energi peluruhan 220 keV. Perey memperhatikan partikel peluruhan dengan tingkat energi di bawah 80 keV. Perey mengira aktivitas peluruhan ini mungkin disebabkan oleh produk peluruhan yang sebelumnya tak dikenal, yang dipisahkan selama pemurnian, tetapi muncul kembali dari aktinium-227 murni. Berbagai tes menghilangkan kemungkinan unsur yang tak diketahui itu adalah torium, radium, timbal, bismut, atau talium. Produk baru ini menunjukkan sifat kimia dari logam alkali (seperti berkopresipitasi dengan garam sesium), yang membuat Perey percaya bahwa itu adalah unsur 87, yang dihasilkan oleh peluruhan alfa aktinium-227.[31] Perey kemudian berusaha menentukan proporsi peluruhan beta terhadap peluruhan alfa pada aktinium-227. Tes pertamanya menempatkan percabangan alfa pada 0,6%, angka yang kemudian ia revisi menjadi 1%.[20]
Perey menamai isotop baru tersebut sebagai actinium-K (sekarang disebut sebagai fransium-223)[31] dan pada tahun 1946, dia mengusulkan nama catium (Cm) untuk unsur yang baru ditemukannya, karena dia yakin itu adalah kation yang paling elektropositif dari unsur tersebut. Irène Joliot-Curie, salah satu pengawas Perey, menentang nama tersebut karena konotasinya cat dan bukan cation; nantinya, lambang tersebut digunakan untuk unsur kurium.[31] Perey kemudian menyarankan nama francium, dari Prancis. Nama ini secara resmi diadopsi oleh Persatuan Kimia Murni dan Terapan Internasional (IUPAC) pada tahun 1949,[7] menjadi unsur kedua setelah galium yang dinamai dari Prancis. Ia diberi lambang Fa, tetapi lambang tersebut direvisi menjadi Fr tak lama kemudian.[36] Fransium adalah unsur terakhir yang ditemukan di alam, bukan melalui penyintesisan, setelah hafnium dan renium.[31] Penelitian lebih lanjut mengenai struktur fransium dilakukan, di antaranya, oleh Sylvain Lieberman dan timnya di CERN pada tahun 1970-an dan 1980-an.[37]
Keterjadian
223Fr adalah hasil peluruhan alfa dari 227Ac dan dapat ditemukan dalam jumlah kecil dalam mineraluranium.[8] Dalam sampel uranium tertentu, diperkirakan hanya ada satu atom fransium untuk setiap 1 × 1018 atom uranium.[26] Dari sini juga diperhitungkan bahwa ada massa total paling banyak 30 g[38] atau, seperti yang diperkirakan sumber lain, 340 hingga 550 g dalam kerak Bumi pada setiap waktu.[39]
Produksi
Fransium dapat disintesis melalui reaksi fusi ketika target emas-197 dibombardir dengan seberkas atom oksigen-18 dari akselerator linear dalam proses yang awalnya dikembangkan di departemen fisika Universitas Negeri New York di Stony Brook pada tahun 1995.[41] Bergantung pada energi sinar oksigen, reaksi tersebut dapat menghasilkan isotop fransium dengan massa 209, 210, dan 211.
Citra panas dari 300.000 atom fransium dalam perangkap giromagnetik, berbobot sekitar 100 attogram
Atom fransium meninggalkan target emas sebagai ion, yang dinetralkan melalui tumbukan dengan itrium dan kemudian diisolasi dalam perangkap giromagnetik (magneto-optical trap, MOT) dalam keadaan gas yang tak terkonsolidasi.[40] Meskipun atom itu hanya berada dalam perangkap selama sekitar 30 detik sebelum keluar atau mengalami peluruhan nuklir, proses ini memasok aliran atom baru yang terus-menerus. Hasilnya adalah keadaan tunak yang mengandung jumlah atom yang cukup konstan untuk waktu yang lebih lama.[40] Peralatan asli dapat menjebak hingga beberapa ribu atom, sementara desain yang lebih baik dapat menjebak lebih dari 300.000 sekaligus.[6] Pengukuran sensitif dari cahaya yang dipancarkan dan diserap oleh atom yang terperangkap memberikan hasil percobaan pertama pada berbagai transisi antara tingkat energi atom pada fransium. Pengukuran awal menunjukkan kesesuaian yang sangat baik antara nilai eksperimen dan perhitungan berdasarkan teori kuantum. Proyek penelitian yang menggunakan metode produksi ini dipindahkan ke TRIUMF pada tahun 2012, di mana lebih dari 106 atom fransium telah ditahan sekaligus, termasuk sejumlah besar 209Fr selain 207Fr dan 221Fr.[42][43]
Metode sintesis lainnya ialah membombardir radium dengan neutron, dan membombardir torium dengan proton, deuteron, atau ionhelium.[20]
223Fr juga dapat diisolasi dari sampel induknya 227Ac, fransium diperah melalui elusi dengan NH4Cl–CrO3 dari penukar kation yang mengandung aktinium dan dimurnikan dengan melewatkan larutan melalui senyawa silikon dioksida yang diisi dengan barium sulfat.[44]
Pada tahun 1996, kelompok Stony Brook menjebak 3000 atom dalam MOT mereka, yang cukup bagi kamera video untuk menangkap cahaya yang dipancarkan oleh atom saat berpendar.[6] Fransium belum disintesis dalam jumlah yang cukup besar untuk ditimbang.[7][26][45]
Catatan
^Beberapa unsur sintetis, seperti teknesium dan plutonium, telah ditemukan di alam setelah ditemukan melalui proses sintetis.
Referensi
^(Indonesia)"Fransium". KBBI Daring. Diakses tanggal 17 Juli 2022.
^ abcdefgLavrukhina, Avgusta Konstantinovna; Pozdnyakov, Aleksandr Aleksandrovich (1970). Analytical Chemistry of Technetium, Promethium, Astatine, and Francium. Translated by R. Kondor. Ann Arbor–Humphrey Science Publishers. hlm. 269. ISBN978-0-250-39923-9.
^ISOLDE Collaboration, J. Phys. B 23, 3511 (1990) (PDF online)
^Guruge, Amila Ruwan (25 Januari 2023). "Francium". Chemical and Process Engineering (dalam bahasa Inggris). Diarsipkan dari versi asli tanggal 2023-06-02. Diakses tanggal 18 Maret 2023.
^Winter, Mark. "Electron Configuration". Francium. The University of Sheffield. Diarsipkan dari versi asli tanggal 2008-02-13. Diakses tanggal 18 Maret 2023.
^ abKozhitov, L. V.; Kol'tsov, V. B.; Kol'tsov, A. V. (2003). "Evaluation of the Surface Tension of Liquid Francium". Inorganic Materials. 39 (11): 1138–1141. doi:10.1023/A:1027389223381.Parameter |s2cid= yang tidak diketahui akan diabaikan (bantuan)
^ abThayer, John S. (2010). "Chap.10 Relativistic Effects and the Chemistry of the Heavier Main Group Elements". Relativistic Methods for Chemists. Springer. hlm. 81. doi:10.1007/978-1-4020-9975-5_2. ISBN978-1-4020-9975-5.
^ abcE. N K. Hyde Radiochemistry of Francium, Subcommittee on Radiochemistry, National Academy of Sciences-National Research Council; available from the Office of Technical Services, Dept. of Commerce, 1960.
^Lide, David R., ed. (2006). CRC Handbook of Chemistry and Physics. 11. CRC. hlm. 180–181. ISBN978-0-8493-0487-3.
^Considine, Glenn D., ed. (2005). Francium, in Van Nostrand's Encyclopedia of Chemistry. New York: Wiley-Interscience. hlm. 679. ISBN978-0-471-61525-5.
^ abcConsidine, Glenn D., ed. (2005). Chemical Elements, in Van Nostrand's Encyclopedia of Chemistry. New York: Wiley-Interscience. hlm. 332. ISBN978-0-471-61525-5.
^Gagnon, Steve. "Francium". Jefferson Science Associates, LLC. Diarsipkan dari versi asli tanggal 2015-03-10. Diakses tanggal 18 Maret 2023.
^Haverlock, T. J.; Mirzadeh, S.; Moyer, B. A. (2003). "Selectivity of calix[4]arene-bis(benzocrown-6) in the complexation and transport of francium ion". J Am Chem Soc. 125 (5): 1126–7. doi:10.1021/ja0255251. PMID12553788.
^Gomez, E.; Orozco, L A; Sprouse, G D (7 November 2005). "Spectroscopy with trapped francium: advances and perspectives for weak interaction studies". Rep. Prog. Phys. 69 (1): 79–118. Bibcode:2006RPPh...69...79G. doi:10.1088/0034-4885/69/1/R02.Parameter |s2cid= yang tidak diketahui akan diabaikan (bantuan)
^ abcdeVan der Krogt, Peter (10 Januari 2006). "Francium". Elementymology & Elements Multidict. Diarsipkan dari versi asli tanggal 2010-01-23. Diakses tanggal 18 Maret 2023.
^"Alabamine & Virginium". Time. 15 Februari 1932. Diarsipkan dari versi asli tanggal 30 September 2007. Diakses tanggal 18 Maret 2023.Parameter |url-status= yang tidak diketahui akan diabaikan (bantuan)
^Winter, Mark. "Geological information". Francium. The University of Sheffield. Diarsipkan dari versi asli tanggal 2008-04-02. Diakses tanggal 18 Maret 2023.
^Tandecki, M; Zhang, J.; Collister, R.; Aubin, S.; Behr, J. A.; Gomez, E.; Gwinner, G.; Orozco, L. A.; Pearson, M. R. (2013). "Commissioning of the Francium Trapping Facility at TRIUMF". Journal of Instrumentation. 8 (12): P12006. arXiv:1312.3562. Bibcode:2013JInst...8P2006T. doi:10.1088/1748-0221/8/12/P12006.Parameter |s2cid= yang tidak diketahui akan diabaikan (bantuan)
Astragalus cicer Klasifikasi ilmiah Kerajaan: Plantae (tanpa takson): Angiospermae (tanpa takson): Eudicots (tanpa takson): Rosids Ordo: Fabales Famili: Fabaceae Genus: Astragalus Spesies: Astragalus cicer Nama binomial Astragalus cicerL. Astragalus cicer adalah spesies tumbuhan yang tergolong ke dalam famili Fabaceae. Spesies ini juga merupakan bagian dari ordo Fabales. Spesies Astragalus cicer sendiri merupakan bagian dari genus Astragalus.[1] Nama ilmiah dari spesies ini pertama kali …
Ilmu keolahragaan Ilmu keolahragaan (disingkat IKOR) adalah pengetahuan sistematis dan terstruktur tentang fenomena olahraga yang dibangun melalui proses penelitian ilmiah. Sebagai disiplin ilmu tersendiri, cakupan penelitian ilmu keolahragaan dapat didasarkan pada studi ontologis, epistemologis dan aksiologis. Studi ontologis dilakukan untuk menjawab pertanyaan tentang apa keunikan dan kebaruannya dari disiplin lain, sedangkan studi aksiologis dilakukan untuk menjawab pertanyaan tentang nilai-n…
Luton TownNama lengkapLuton Town Football ClubJulukanThe HattersBerdiri11 April 1885; 138 tahun lalu (1885-04-11)StadionKenilworth Road(Kapasitas: 10,356[1][2])PemilikLuton Town Football Club 2020 Ltd[3]Ketua David WilkinsonManajer Rob EdwardsLigaLiga Utama Inggris2022–2023Kejuaraan EFL, ke-3 dari 24 (promosi via play-off)Situs webSitus web resmi klub Kostum kandang Kostum tandang Musim ini Luton Town F.C. merupakan sebuah tim sepak bola asal Inggris yang saat…
Mexicans moving abroad This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Emigration from Mexico – news · newspapers · books · scholar · JSTOR (March 2023) (Learn how and when to remove this template message) Mexican diasporaRegions with significant populations United States10,931,939(by birth, 2021)[1 …
Superior cardiac nerveDiagram of the cervical sympathetic. (Superior cardiac nerve labeled at center right.)DetailsFromsuperior cervical ganglionInnervatesheartIdentifiersLatinnervus cardiacus cervicalis superiorAnatomical terms of neuroanatomy[edit on Wikidata] The superior cardiac nerve arises by two or more branches from the superior cervical ganglion, and occasionally receives a filament from the trunk between the first and second cervical ganglia. It runs down the neck behind the common…
Artikel ini kemungkinan ditulis dari sudut pandang penggemar dan bukan sudut pandang netral. Mohon rapikan untuk menghasilkan standar kualitas yang lebih tinggi dan untuk membuat pemakaian nada yang netral. (Maret 2022) (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Karakter dalam seri NarutoTobirama Senju千手扉間Penampilan perdanaMangaBab 118AnimeNaruto episode 69Tampil diAnime, manga, OVA, dan permainanPengisi suaraInggrisPeter LurieJepangKen'yū Horiuchi Informasi kar…
Borough in Pennsylvania, United StatesHerndon, PennsylvaniaBoroughMain Street (PA 147) in Herndon,September 2015Location of Herndon in Northumberland County, Pennsylvania.HerndonLocation on Herndon in PennsylvaniaShow map of PennsylvaniaHerndonHerndon (the United States)Show map of the United StatesCoordinates: 40°42′15″N 76°50′36″W / 40.70417°N 76.84333°W / 40.70417; -76.84333CountryUnited StatesStatePennsylvaniaCountyNorthumberlandSettled1827Incorporate…
Disambiguazione – Se stai cercando altri significati, vedi Gilbert White (disambigua). Questa voce sugli argomenti scienziati britannici e ornitologi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Gilbert White Gilbert White (Selborne, 18 luglio 1720 – Selborne, 26 giugno 1793) è stato un naturalista e ornitologo britannico. Fra il 1768 e il 1793 collaborò con il naturalista William Markwick, osservando e catalogando più di 400 specie nell'Hampshi…
Luwu pada Pekan Olahraga Provinsi Sulawesi Selatan 2022 Ketua kontingen Andi Muhammad Arfan Basmin Warna kebanggaan BIRU TUA Moto kontingen Kami Luwu, Kami Sulsel, Kami Bersaudara Peringkat sebelumnya 19 dari 24 kontingen Jumlah atlet 140 orang Jumlah cabang olahraga resmi yang diikuti 18 cabang olahraga Jumlah cabang olahraga eksibisi yang diikuti TBA cabang olahraga Jumlah pendukung atlet (ofisial, pelatih, asisten pelatih, manajer, panitia kontingen, instansi pendukung) 251 orang …
This article is about the Cold War between Soviet-backed Arab republics and US-backed Arab monarchies. For the conflict between Iran and Saudi Arabia, see Iran–Saudi Arabia proxy conflict. For the conflict between Qatar and Saudi Arabia, see Qatar–Saudi Arabia diplomatic conflict. Period of political rivalry in the Arab world This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article n…
Australian stage and screen actress (1897–1992) DameJudith AndersonAC DBEAnderson in The Strange Love of Martha Ivers (1946)BornFrances Margaret Anderson(1897-02-10)10 February 1897Adelaide, Colony of South AustraliaDied3 January 1992(1992-01-03) (aged 94)Santa Barbara, California, U.S.OccupationActressYears active1915–1987Spouses Benjamin Harrison Lehmann (m. 1937; div. 1939) Luther Greene (m. 1946…
A winged spirit in Persian cultureFor other uses, see Peri (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Peri – news · newspapers · books · scholar · JSTOR (December 2012) (Learn how and when to remove this message) PeriPeri, flying, with cup and wine flask. Miniature by Şahkulu. Freer Gall…
Net attractive interaction involving one of the chalcogen elements This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Chalcogen bond – news · newspapers · books · scholar · JSTOR (December 2017) (Learn how and when to remove this message) In chemistry, a chalcogen bond (ChB) is an attractive interaction in the family of σ-hole interactions, along with haloge…
Pour les articles homonymes, voir Groddeck. Georg GroddeckBiographieNaissance 13 octobre 1866Bad KösenDécès 11 juin 1934 (à 67 ans)KnonauNationalité allemandeActivités Psychiatre, psychanalyste, essayisteFratrie Caroline Groddeck (d)Autres informationsArchives conservées par Albert Sloman Library (d)[1]Archives littéraires allemandes de Marbach (A:Groddeck, Georg)[2]Vue de la sépulture.modifier - modifier le code - modifier Wikidata Georg Walter Groddeck, né le 13 octobre 1866 à …
Questa voce sull'argomento politici francesi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Emmanuel Crétet Ministro dell'interno del Primo Impero FranceseDurata mandato11 agosto 1807 –29 giugno 1809 PredecessoreJean-Baptiste Nompère de Champagny SuccessoreJoseph Fouché Governatore della Banca di Francia del Primo Impero FranceseDurata mandato25 aprile 1806 –9 agosto 180…
Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut). …