Helium adalah unsur kimia dengan lambangHe dan nomor atom 2. Helium tak berwarna, tak berbau, tak berasa, tak beracun, hampir inert, berupa gas monatomik, dan merupakan unsur pertama pada golongan gas mulia dalam tabel periodik. Titik didih dan titik lebur gas ini merupakan yang terendah di antara semua unsur. Helium berwujud hanya sebagai gas terkecuali pada kondisi yang sangat ekstrem. Kondisi ekstrem juga diperlukan untuk menciptakan sedikit senyawa helium, yang semuanya tidak stabil pada suhu dan tekanan standar. Helium memiliki isotop stabil kedua yang langka yang disebut helium-3. Sifat dari cairan varitas helium-4; helium I dan helium II; penting bagi para periset yang mempelajari mekanika kuantum (khususnya dalam fenomena superfluiditas) dan bagi mereka yang mencari efek mendekati suhu nol absolut yang dimiliki materi (seperti superkonduktivitas).
Helium adalah unsur kedua terbanyak dan kedua teringan di jagad raya, mencakupi 24% massa keunsuran total alam semesta dan 12 kali jumlah massa keseluruhan unsur berat lainnya. Keberlimpahan helium yang sama juga dapat ditemukan pada Matahari dan Jupiter. Hal ini dikarenakan tingginya energi pengikatan inti (per nukleon) helium-4 berbanding dengan tiga unsur kimia lainnya setelah helium. Energi pengikatan helium-4 ini juga bertanggung jawab atas keberlimpahan helium-4 sebagai produk fusi nuklir maupun peluruhan radioaktif. Kebanyakan helium di alam semesta ini berupa helium-4, yang dipercaya terbentuk semasa Ledakan Dahsyat. Beberapa helium baru juga terbentuk lewat fusi nuklir hidrogen dalam bintang semesta.
Di Bumi, gas ini cukup jarang ditemukan (0,00052% volume atmosfer). Kebanyakan helium yang kita temukan di bumi terbentuk dari peluruhan radioaktif unsur-unsur berat (torium dan uranium) sebagai partikel alfa berinti atom helium-4. Helium radiogenik ini terperangkap di dalam gas bumi dengan konsentrasi sebagai 7% volume, yang darinya dapat diekstraksi secara komersial menggunakan proses pemisahan temperatur rendah yang disebut distilasi fraksional.
Sejarah
Penemuan ilmiah
Bukti keberadaan helium pertama kali terpantau pada 18 Agustus 1868 berupa garis spektrum berwarna kuning cerah berpanjang gelombang 587,49 nanometer yang berasal dari spektrumkromosferMatahari. Garis spektrum ini terdeteksi oleh astronom Prancis Jules Janssen sewaktu gerhana matahari total di Guntur, India.[5][6] Garis spektrum ini pertama kali diasumsikan sebagai natrium. Pada tanggal 20 Oktober tahun yang sama, astronom Inggris Norman Lockyer juga memantau garis kuning yang sama dalam spektrum sinar matahari, yang kemudian dia namakan garis Fraunhofer D3 karena garis ini berdekatan dengan garis natrium D1 dan D2 yang telah diketahui.[7] Ia menyimpulkan bahwa keberadaan garis ini disebabkan oleh suatu unsur di Matahari yang tak diketahui di Bumi. Lockyer dan seorang kimiawan Inggris lainnya Edward Frankland menamai unsur tersebut berdasarkan nama Yunani untuk Matahari ἥλιος (helios).[8][9][10]
Pada tahun 1882, fisikawan Italia Luigi Palmieri mendeteksi helium di Bumi untuk pertama kalinya melalui identifikasi garis spektrum D3 helium ketika ia menganalisis lavaGunung Vesuvius.[11]
Pada 26 Maret 1895, kimiawan Skotlandia Sir William Ramsay berhasil mengisolasi helium yang ada di Bumi dengan memperlakukan mineral kleveit dengan berbagai jenis asam mineral. Ramsay berusaha mencari unsur argon, tetapi setelah memisahkan nitrogen dan oksigen dari gas yang terlepaskan, ia menemukan garis kuning cerah yang sama dengan garis D3 yang terpantau dari Matahari.[7][12][13][14] Sampel gas ini kemudian teridentifikasikan sebagai helium oleh Lockyer dan fisikawan Britania William Crookes. Helium juga secara terpisah diisolasi dari mineral kleveit pada tahun yang sama oleh kimiawan Per Teodor Cleve dan Abraham Langlet di Uppsala, Swedia, yang berhasil mengumpulkan kandungan gas helium yang cukup untuk secara akurat menentukan bobot atomnya.[6][15][16] Helium juga diisolasi oleh geokimiawan Amerika William Francis Hillebrand sebelum penemuan Ramsay ketika ia memperhatikan adanya garis spektrum tak lazim manakala ia sedang menguji sampel mineral uraninit. Walau demikian, Hillebrand mengira bahwa garis spektrum ini disebabkan oleh nitrogen.[17]
Pada tahun 1907, Ernest Rutherford dan Thomas Royds menunjukkan bahwa partikel alfa adalah inti helium dengan pertama-tama mengizinkan partikel ini menembus dinding gelas tabung vakum yang tipis dan kemudian menghasilkan pelucutan dalam tabung untuk kemudian dipelajari spektrum gas yang ada di dalam tabung tersebut. Pada tahun 1908, helium berhasil dijadikan cair oleh fisikawan Belanda Heike Kamerlingh Onnes dengan mendinginkan gas ini ke temperatur kurang dari satu kelvin.[18] Ia mencoba untuk memadatkan gas ini dengan menurunkan temperaturnya lebih jauh, namun gagal karena helium tidak memiliki temperatur titik tripel di mana padatan, cairan, dan gas berwujud dalam kesetimbangan. Salah seoarang murid Onnes, Willem Hendrik Keesom pada akhirnya berhasil memadatkan 1 cm3 helium pada tahun 1926 dengan memberikan tekanan luar tambahan.[19]
Setelah operasi pengeboran minyak di Dexter, Kansas pada tahun 1903 yang menghasilkan geyser gas yang tidak dapat dibakar, seorang geolog Kansas Erasmus Haworth kemudian mengumpulkan sampel gas yang keluar untuk diuji komposisinya di Universitas Kansas di Lawrence dengan bantuan kimiawan Hamilton Cady dan David McFarland. Ia menemukan bahwa gas tersebut terdiri dari (berdasarkan volumenya) 72% nitrogen, 15% metana (hanya dapat terbakar dengan kandungan oksigen yang cukup), 1% hidrogen, dan 12% gas yang tak teridentifikasi.[6][22] Dalam analisis lebih lanjut, Cady dan McFarland menemukan bahwa 1,84% sampel gas tersebut adalah helium.[23][24] Hasil analisis ini menunjukkan bahwa walaupun helium secara keseluruhannya sangat langka di Bumi, zat ini terkonsentrasi dalam jumlah yang besar di dalam Dataran Amerika dan dapat diekstraksi sebagai hasil samping gas alam.[25]
Penemuan ini kemudian menjadikan Amerika Serikat sebagai penyuplai gas helium terbesar di dunia. Mengikuti saran Sir Richard Threlall, Angkatan Laut Amerika Serikat mensponsori tiga pabrik helium eksperimental semasa Perang Dunia II. Tujuannya adalah untuk mengisi balon penghalang menggunakan gas yang tidak terbakar dan lebih ringan dari udara. Total 5.700 m3 gas dengan komposisi 92% helium berhasil dihasilkan dari program ini.[7] Sebagian dari gas ini kemudian digunakan dalam kapal udara berhelium pertama milik Angkatan Laut AS, C-7, yang memulai penerbangan perdananya dari Hampton Roads, Virginia, ke Bolling Field di Washington, D.C., pada 1 Desember 1921.[26]
Walaupun proses ekstraksi menggunakan pencairan gas temperatur rendah tidak sempat dikembangkan untuk digunakan semasa Perang Dunia I, produksi helium terus dilanjutkan. Helium utamanya digunakan sebagai gas pengangkat pada kapal udara. Permintaan atas gas helium meningkat semasa Perang Dunia II. Spektrometer massa helium juga sangat vital dalam proyek bom atom Manhattan.[27]
Pemerintah Amerika Serikat mendirikan Cadangan Helium Nasional pada tahun 1925 di Amarillo, Texas dengan tujuan menyuplai helium kepada kapal udara militer AS pada saat perang dan kapal udara komersial pada saat damai.[7] Karena embargo militer AS terhadap Jerman yang melarang penyuplaian helium, LZ 129 Hindenburg dan zeppelin-zeppelin Jerman lainnya terpaksa menggunakan hidrogen sebagai gas pengangkat. Penggunaan helium setelah Perang Dunia II menurun, namun cadangan helium diperbesar pada tahun 1950-an untuk memenuhi suplai helium cair sebagai cairan pendingin yang diperlukan untuk membuat bahan bakar roket oksigen/hidrogen semasa Perang Dingin dan Perlombaan Angkasa. Jumalh helium yang digunakan Amerika pada tahun 1965 delapan kali lebih tinggi daripada puncak penggunaannya semasa era peperangan.[28]
Setelah adanya "Helium Acts Amendments of 1960" (Public Law 86–777) (Amendemen Akta Helium 1960), Biro Pertambangan Amerika Serikat menunjuk lima pabrik pengilangan swasta untuk mengekstraksi helium dari gas alam. Dalam program ini, pipa sepanjang 684 km dibangun dari Bushton, Kansas ke ladang gas milik pemerindah dekat Amarillo, Texas. Campuran helium-nitrogen yang dikirim kemduain disimpan dalam ladang gas tersebut untuk keperluan lebih lanjut.[29]
Sampai dengan tahun 1995, satu miliar meter kubik gas helium telah dikumpulkan, dan Cadangan Nasional Helium AS memiliki hutang sebesar AS$ 1,4 miliar. Hal ini kemudian mendorong Kongres AS untuk melepaskan cadangan helium pada tahun 1996.[6][30] Akta Privatisasi Helium 1996 ("Helium Privatization Act of 1996")[31] (Public Law 104–273) yang disahkan kemudian menunjuk Departemen Dalam Negeri Amerika Serikat untuk mulai mengosongkan cadangan tersebut pada tahun 2005.[32]
Helium yang diproduksi antara tahun 1930 sampai dengan 1945 memiliki tingkat kemurnian sebesar 98,3%. Tingkat kemurnian ini cukup murni untuk digunakan dalam kapal udara. Pada tahun 1945, sejumlah kecil helium 99,9% diproduksi untuk keperluan pengelasan. Pada tahun 1949, helium 99,95% mulai tersedia secara komersial.[33]
Dalam sejarahnya, produksi helium Amerika Serikat pernah mencapai 90% produksi helium komersial di dunia, manakala kilang ekstraksi Kanada, Polandia, Rusia, dan negara lain memproduksi sisanya. Pada pertengahan tahun 1990-an, kilang baru di Arzew, Aljazair mulai beroperasi dan menghasilkan helium sebesar 17 juta meter kubik. Jumlah ini cukup untuk memenuhi seluruh permintaan Eropa akan helium. Pada masa yang sama, konsumsi helium AS telah meningkat di atas 15 juta kg per tahun.[34] Pada tahun 2004-2006, kilang produksi helium di Ras Laffan, Qatar, dan Skikda, Aljazair dibangun. Aljazair kemudian menjadi produsen helium kedua terbesar di dunia.[35] Konsumsi dan biaya produksi helium pun terus meningkat.[36] In the 2002 to 2007 period helium prices doubled.[37]
Pada tahun 2012, Cadangan Helium Nasional Amerika Serikat menyimpan 30% helium dunia.[38] Cadangan ini diperkirakan akan habis digunakan pada tahun 2018.[38]
Menurut perspektif mekanika kuantum, helium adalah atom tersederhana kedua yang dapat dimodelkan setelah atom hidrogen. Helium tersusun atas dua elektron dalam orbital atom helium dan inti atom yang terdiri dari dua proton dan beberapa neutron. Menurut mekanika Newton, tiada sistem yang terdiri dari lebih dari dua pertikel yang dapat diselesaikan menggunakan pendekatan matematis analitis yang eksak (liat masalah tiga benda). Hal yang sama juga berlaku pada atom helium, sehingganya diperlukan metode matematis numeris bahkan untuk menyelesaikan sistem satu inti dan dua elektron. Metode kimia komputasional telah digunakan untuk menciptakan gambaran elektron yang terikat dengan inti atom secara kuantum dengan akurasi < 2% dari nilai sebenarnya.[39] Dalam gambaran model ini, ditemukan bahwa tiap-tiap elektron dalam helium saling memerisai atraksi inti atom (efek pemerisaian) sehingganya muatan efektif inti yang tiap-tiap elektron terima (nilai Z) adalah sekitar 1,69 dan bukannya 2.
Stabilitas inti atom dan kelopak elektron helium-4
Inti atom helium-4 identik dengan partikel alfa. Eksperimen penghamburan elektron energi tinggi menunjukkan bahwa muatannya akan menurun secara eksponensial dari nilai maksimum a pada suatu titik pusat, persis sama dengan rapatan muatan awan elektron helium itu sendiri. Kesimetrian ini mencerminkan berlakunya hukum fisika yang sama, yakni pasangan neutron dan pasangan proton dalam inti atom helium mematuhi kaidah mekanika kuantum yang sama sebagaimana pasangan elektron helium patuhi (walaupun partikel-partikel inti menerima potensial pengikatan inti yang berbeda), sehingganya kesemuaan fermion ini memenuhi orbital 1s secara berpasangan, tiada satupun yang memiliki momentum sudut orbital, dan tiap-tiap fermionnya saling membatalkan spin intrinsik satu sama lainnya. Penambahan partikel sejenis dalam sistem memerlukan momentum sudut dan akan mengakibatkan pelepasan energi yang lebih rendah (dan sebenarnya pula, tiada inti atom bernukelon lima yang stabil). Susunan seperti ini sehingganya sangat stabil secara energetika dan kestabilan ini bertanggung jawab atas banyak sifat-sifat helium yang terpantau.
Sebagai contohnya, stabilitas dan rendahnya energi keadaan awan elektron helium bertanggung jawab atas keinertan kimiawi helium dan juga ketiadaan interaksi antar atom, mengakibatkan helium memiliki titik lebur dan titik didih yang paling rendah di antara semua unsur-unsur kimia.
Sama halnya pula, stabilitas inti atom helium-4 juga menghasilkan efek yang sama, dan bertanggung jawab atas mudahnya helium-4 terbentuk dalam reaksi atomik nuklir yang melibatkan emisi maupun fusi partikel berat. Beberapa helium-3 yang stabil dihasilkan dalam reaksi fusi hidrogen, namun jumlahnya sangat kecil dibandingkan dengan helium-4. Stabilitas helium-4 adalah sebab hidrogen diubah menjadi helium-4 (dan bukannya deuterium maupun helium-3) dalam reaksi nuklir Matahari.
Stabilitas inti helium-4 yang tidak lazim juga sangat penting dalam bidang kosmologi. Stabilitas inti helium-4 menjelaskan mengapa dalam menit-menit pertama setelah Ledakan Dahsyat, hampir semua inti atom yang terbentuk adalah inti helium-4. Pengikatan inti helium-4 sangat erat sehingganya produksi helium-4 menghabiskan hampir semua neutron yang bebas dalam beberapa menit sebelum neutron tersebut menjalani peluruhan beta, dan hanya menyisakan sedikit neutron untuk membentuk atom-atom yang lebih berat lainnya seperti litium, berilium, dan boron. Pengikatan inti helium-4 per nukleon lebih kuat daripada unsur-unsur tersebut (lihat nukleogenesis dan energi pengikatan) sehingga tiada dorongan energetik yang tersedia lagi seketika helium terbentuk untuk membentuk unsur 3, 4, dan 5. Secara energetis, helium hampir cukup dapat menjalani fusi membentuk unsur berikut yang energi per nukleonnya lebih rendah, yakni karbon. Namun, dikarenakan ketiadaan unsur intermediat, proses ini mempersyaratkan tiga inti helium saling bertumbukan secara bersamaan (lihat proses tripel alfa). Oleh karena itu, hampir tidak ada waktu yang tersedia bagi karbon untuk terbentuk secara signifikan beberapa menit setelah Ledakan dahysat sebelum alam semesta mulai mendingin dan mengembang. Hal inilah yang membuat rasio hidrogen/helium pada masa-masa awal alam semesta sama dengan yang terpantau sekarang (yakni 3 bagian hidrogen per 1 bagian helium-4 berdasarkan massa), dengan hampir semua neutron alam semesta terperangkan dalam helium-4.
Semua unsur-unsur yang lebih berat lainnya (termasuk unsur-unsur yang diperlukan untuk membentuk planet seperti Bumi ataupun kehidupan) oleh karenanya terbentuk setelah peristiwa Ledakan Dahsyat di dalam bintang yang memiliki temperatur yang cukup panas untuk menjalankan fusi helium dengan sendirinya. Semua unsur selain hidrogen dan helium yang ada sekarang hanya mencakupi 2% massa materi alam semesta. Sebaliknya, helium-4 menduduki sekitar 23% materi biasa alam semesta.
Fase gas dan plasma
Helium adalah gas mulia yang paling tidak reaktif setelah neon, dan karenanya merupakan unsur yang paling tidak reaktif kedua dari semua unsur-unsur;[40] Helium bersifat inert dan monoatomik di bawah semua kondisi standar. Dikarenakan massa atom molar helium yang relatif rendah, konduktivitas termal helium, kalor jenis helium, dan kelajuan suara dalam gas helium lebih besar daripada gas lainnya terkecuali hidrogen. Ukuran atom helium juga sangat kecil, sehingga laju difusi helium dalam zat padat tiga kali lebih cepat daripada udara biasa dan kelajuannya 65% daripada laju difusi hidrogen.[7]
Helium adalah gas monoatomik yang paling tidak larut dalam air.[41]Indeks refraksi helium juga merupakan yang paling mendekati nilai satu daripada indeks refraksi gas lainnya.[42] Helium memiliki nilai koefisien Joule-Thomson yang negatif pada temperatur normal, yang berarti ia akan memanas ketika dibiarkan memuai dengan bebas. Ia akan mendingin apabila memuai pada temperatur yang lebih rendah daripada temperatur inversi Joule-Thomson, yakni sekitar 32 sampai dengan 50 K pada 1 atmosfer.[7] Seketika helium didinginkan di bawah temperatur ini, helium dapat dicarikan melalui pendinginan pemuaian.
Kebanyakan helium luar angkasa ditemukan dalam keadaan plasma dengan sifat-sifat yang berbeda daripada yang ditemukan pada helium atomik. Dalam keadaan plasma, elektron helium tidak terikat pada intinya, mengakibatkan konduktivitas helium plasma yang sangat tinggi. Partikel bermuatan ini sangat dipengaruhi oleh medan magnet dan listrik. Sebagai contoh, pada saat badai matahari, helium yang terionisasi beserta hidrogen yang terionisasi berinteraksi dengan magnetosfer bumi dan menghasilkan arus Birkeland dan fenomena aurora.[43]
Tidak seperti unsur-unsur lainnya, helium akan tetap berwujud cair pada nol mutlak dan tekanan normal. Hal ini merupakan efek langsung dari mekanika kuantum: utamanya, energi titik nol sistem terlalu tinggi bagi sistem untuk memadat. Helium dapat dipadatkan pada temperatur 1–1,5 K (sekitar −272 °C) dan tekanan 25 bar (2,5 MPa).[44] Sangatlah sulit untuk membedakan helium padat dengan helium cair karena indeks refraksi kedua fase tersebut hampir sama. Helium padat memiliki struktur kristal dan rentangan titik lebur yang sangat kecil. Selain itu, ia juga dapat dikompreskan; apabila diberikan tekanan, volumenya akan menurun lebih dari 30%.[45] Dengan nilai modulus limbak sekitar 27 MPa,[46] helium padat ~100 kali lebih termampatkan daripada air. Helium padat memiliki massa jenis 0,214 ± 0,006 g/cm3 pada 1,15 K dan 66 atm; diproyeksikan massa jenisnya mencapai 0,187 ± 0,009 g/cm3 pada 0 K dan 25 bar (2,5 MPa).[47]
Keadaan helium I
Pada suhu di bawah titik didihnya sebesar 4,2 K dan di atas titik lambdanya 2,1768 K, isotop helium-4 berwujud cairan tak berwarna, yang disebut helium I.[7] Sama seperti cairan kriogenik lainnya, helium I mendidih ketika dipanaskan dan menyusut ketika didinginkan.
Heliu I memiliki indeks refraksi seperti gas senilai 1,026, yang menyebabkan permukaannya sulit untuk dilihat, sehingga umumnya busa polistirena yang mengambang digunakan untuk mendeteksi di mana permukaan cairan ini berada.[7] Helium I memiliki viskositas yang sangat rendah dan massa jenis sekitar 0,145-0,125 g/mL (antara 0 sampai 4 K),[48] yang nilainya hanya seperempat dari nilai yang diteorikan menurut fisika klasik.[7]Mekanika kuantum diperlukan untuk menjelaskan disparitas ini dan oleh karena itu, baik cairan helium-I dan -II disebut sebagai fluida kuantum, yang berarti bahwa keduanya memperlihatkan sifat-sifat atomik kuantum pada skala makroskopik. Hal ini merupakan efek dari nilai titik didihnya yang sangat mendekati nol mutlak, sehingga menghalangi gerakan acak molekul (energi termal) untuk menyembunyikan sifat-sifat atomiknya.[7]
Keadaan helium II
Helium cair yang berada dalam keadaan di bawah titik lambdanya mulai menunjukkan sifat-sifat yang tak lazim. Helium dalam keadaan ini disebut sebagai helium II. Pendidihan helium II tidak dimungkinkan oleh karena konduktivitas termalnya yang sangat tinggi; pemanasan yang diberikan pada helium II akan menyebabkan penguapan secara langsung menjadi gas. Helium-3 juga mempunyai fase superfluida, namun pada temperatur yang lebih rendah; oleh karena itu, tidaklah diketahui banyak sifat-sifat superfluida isotop helium-3.[7]
Helium II merupakan superfluida, yaitu keadaan mekanika kuantum materi yang bersifat tak lazim. Sebagai contohnya, fluida ini akan mengalir melalui tabung kapiler setipis 10−7 sampai dengan 10−8 m namun tetap tidak terukur viskositasnya.[6] Namun, ketika pengukuran dilakukan antara dua cakram yang bergerak, nilai viskositasnya yang sama dengan gas helium akan terukur. Teori terkini menjelaskan hal ini menggunakan model dua fluida untuk helium II. Dalam model ini, helium cair di bawah titik lambdanya dipandang mengandung sebagian atom helium dalam keadaan dasar yang bersifat superfluida dan mengalir dengan nilai viskositas persis nol, dan sebagian lainnya dalam keadaan tereksitasi, yang berperilaku sama seperti cairan biasa lainnya.[49]
Efek tak lazim helium II dapat terpantau pada efek muncrat helium II. Dalam efek muncrat, suatu bilik dibangun dan tersambung dengan tandon helium II melalui cakram sinter. Helium superfluida akan menembus ke dalam bilik dengan mudahnya tetapi helium non-superfluida tidak akan menembusnya. Jika interior bilik dipanaskan, helium superfluda akan berubah menjadi helium non-superfluida. Agar dapat menjaga kesetimbangan helium superfluida, helium superfluida akan masuk ke dalam bilik dan meningkatkan tekanan, mengakibatkan cairan muncrat keluar dari bilik.[50]
Helium II memiliki konduktivitas termal yang paling besar daripada zat apapun yang diketahui. Konduktivitasnya satu juta kali lebih besar daripada konduktivitas termal helium I dan beberapa ratus kali lipat daripada konduktivitas termal tembaga.[7] Hal ini dikarenakan penghantaran kalor terjadi karena mekanisme kuantum yang khusus. Kebanyakan materi yang menghantarkan kalor dengan baik memiliki pita valensi elektron bebas yang menghantarkan kalor. Helium II tidak memiliki pita valensi seperti itu namun menghantarkan kalor dengan baik. Penghantaran kalor pada helium II diatur oleh persamaan yang mirip dengan persamaan gelombang yang digunakan untuk mengkarakterisasikan perambatan bunyi dalam udara. Ketika kalor diberikan, kalor akan terhantarkan 20 meter per detik pada 1,8 K sebagai gelombang. Fenomena ini dikenal sebagai bunyi kedua.[7]
Helium II juga menunjukkan efek menjalar. Ketika helium ditampung dalam dinding wadah yang tinggi, helium II akan bergerak menjalar ke seluruh permukaan wadah melawan gaya gravitasi. Helium II akan lolos dari wadah penampung yang tidak sumbat dengan menjalar ke sisi-sisi penampung sampai ia mencapai daerah yang lebih hangat dan menguap. Penjalaran helium II ini bergerak dalam bentuk lapisan film helium setebal 30 nm yang tak tergantung pada bahan permukaan. Lapisan film ini disebut sebagai film Rollin dan dinamakan atas penemunya, Bernard V. Rollin.[7][51][52] Diakibatkan oleh perilaku penjalaran dan kemampuan helium untuk bocor melalui pori-pori yang sangat kecil, sangatlah sulit untuk menampung dan menyimpan helium cair. Gelombang yang merambat dalam film Rollin diatur oleh persamaan yang sama dengan persamaan gelombang gravitasi dalam air yang dangkal. Namun dalam hal ini, gaya pemulihnya bukanlah gravitasi, melainkan gaya van der Waals.[53] Gelombang ini dikenal sebagai bunyi ketiga'.[54]
Terdapat setidaknya delapan isotop helium yang diketahui, namun hanya helium-3 dan helium-4 yang stabil. Di atmosfer Bumi, hanya terdapat satu atom 3He untuk setiap satu juta atom 4He.[6] Tidak seperti unsur lainnya, keberlimpahan isotop helium bervariasi tergantung pada asal usulnya karena proses pembentukan yang berbeda-beda. Isotop yang paling banyak adalah helium-4 dan dibentuk di Bumi melalui peluruhan alfa unsur-unsur radioaktif yang lebih berat. Partikel alfa yang muncul dari peluruhan ini berbentuk inti helium-4 yang terionisasi penih. Helium-4 memiliki stabilitas inti yang tidak lazim karena nukleonnya tersusun secara penuh. Helium-4 juga terbentuk dalam jumlah yang sangat banyak semasa nukleosintesis Ledakan Dahsyat.[55]
Helium-3 terdapat di Bumi hanya dalam jumlah sekelumit; kebanyakan sudah ada saat pembentukan Bumi, walaupun beberapa jatuh ke Bumi terperangkap dalam debu kosmik.[56] Sekelumit helium-3 juga terbentuk melalui peluruhan betatritium.[57] Batu-batuan yang berasal dari kerak Bumi memiliki rasio isotop helium yang bervariasi, dan rasio-rasio ini digunakan untuk menginvestigasi asal usul batuan dan komposisi mantel Bumi.[56]3He lebih berlimpah di bintang sebagai produk fusi nuklir. Oleh sebab itu, dalam medium antarbintang, proporsi 3He terhadap 4He adalah sekitar 100 kali lebih tinggi daripada proporsinya di Bumi.[58] Materi-materi yang berasal dari luar planet seperti bulan dan asteroid memiliki sekelumit helium-3 yang berasal dari penumbukan badai matahari. Permukaan bulan mengandung helium-3 dalam konsentrasi tingkat besaran 0,01 ppm. Jumlah ini lebih tinggi daripada yang ditemukan di atmosfer Bumi sekitar 5 ppt (bagian per triliun).[59][60]
Helium-4 cair dapat didinginkan sampai dengan temperatur sekitar 1 K menggunakan pendinginan evaporatif. Menggunakan proses pendinginan yang sama, helium-3 dapat mencapai temperatur sekitar 0,2 K. Pada temperatur lebih rendah daripada 0,8 K, campuran cairan 3He dan 4He dalam jumlah yang sama akan memisah dengan sendirinya menjadi dua fase yang tak taercampurkan. Hal ini disebabkan oleh ketidakserupaan kedua isotop tersebut, yakni secara kuantum atom helium-4 termasuk boson, sedangkan atom helium-3 termasuk fermion.[7]
Isotop-isotop helium eksotik lainnya dapat pula terbentuk, namun semuanya akan dengan cepat meluruh menjadi unsur lainnya. Isotop helium yang berparuh waktu tersingkat adalah helium-5 dengan waktu paruh 7,6 × 10−22 detik. Helium-6 meluruh dengan mengemisi partikel beta dan berwaktu paruh 0,8 detik. Helum-7 juga mengemisi partikel beta selain sinar gama. Helium-7 dan helium-8 terbentuk dalam reaksi nuklir tertentu.[7] Helium-6 dan helium-8 dikenal baik memperlihatkan halo nuklir.[7]
Helium memiliki valensi kimia nol, sehingga tidak akan bereaksi secara kimiawi dalam kondisi normal.[45] Helium merupakan insulator listrik yang baik, terkecuali jika ia diionisasikan. Seperti gas mulia lainnya, helium memiliki aras energi metastabil yang mengizinkannya tetap terionisasi dengan voltase di bawah potensial ionisasinya.[7] Helium dapat membentuk senyawa yang tidak stabil, dikenal sebagai eksimer, dengan tungsten, yodium, fluorin, sulfur, dan fosforus ketika terkena lucutan pijar, tumbukan elektron, maupun plasma dari sebab lainnya. Senyawa HeNe, HgHe10, WHe2, dan ion He, He, HeH, dan HeD telah berhasil dibentuk melalui cara ini.[61] HeH+ stabil dalam keadaan dasarnya, namun sangat reaktif. Senyawa ini merupakan asam Brønsted yang paling kuat, sehingganya hanya dapat ditemukan dalam keadaan terisolasi karena ia akan memprotonasi molekul manapun jika berkontak dengannya. Secara teoretis, senyawa lainnya juga dimungkinkan terbentuk, seperti misalnya helium fluorohidrida (HHeF) yang beranalogi dengan senyawa HArF yang ditemukan pada tahun 2000.[62] Hasil perhitungan teoretis menunjukkan bahwa dua senyawa yang mengandung ikatan helium-oksigen juga mungkin stabil.[63] Dua spesi molekul baru yang diprediksikan menggunakan teori, CsFHeO dan N(CH3)4FHeO, merupakan turunan dari anion metastabil [F– HeO] yang diteorikan pada tahun 2005 oleh sekelompok ilmuwan Taiwan. Jika berhasil dikonfirmasikan secara eksperimental, senyawa-senyawa ini akan meruntuhkan keinertan helium dan hanya menyisakan neon sebagai satu-satunya unsur yang inert.[64]
Helium juga telah berhasil dimasukkan ke dalam molekul sangkar fulerena dengan memanaskannya dalam tekanan tinggi. Ketika senyawa turunan fulerena ini disintesis, helium yang terperangkap akan tetap ada.[65] Jika helium-3 digunakan, senyawa ini akan dapat terpantau menggunakan spektroskopi resonansi magnetik nuklir.[66] Banyak senyawa fulerena berkandung helium-3 yang telah dilaporkan sintesisnya. Walaupun dalam hal ini atom helium tidak terikat secara kovalen maupun ionik, senyawa seperti ini memiliki sifat-sifat yang khas dan komposisi senyawa yang pasti seperti senyawa kimia lainnya.
Dalam atmosfer Bumi, konsentrasi helium berdasarkan volumenya hanya sekitar 5,2 bagian per juta.[67][68] Konsentrasi helium bumi cukup rendah dan konstan walaupun helium baru terus terbentuk. Hal ini dikarenakan kebanyakan helium yang berada di atmosfer Bumi lolos dari gaya gravitasi bumi dan lepas ke luar angkasa.[69][70][71] Di heterosfer Bumi, helium dan gas yang lebih ringan lainnya merupakan unsur yang paling berlimpah.
Kebanyakan helium yang ditemukan di Bumi merupakan hasil produk peluruhan radioaktif. Helium ditemukan dalam jumlah besar dalam mineral uranium dan torium, termasuk kleveit, uraninit. karnotit, dan monazit, karena mineral-mineral ini mengemisi partikel alfa (inti helium He2+). Sesegara partikel ini bertumbukan dengan batuan, elektron akan bergabung dengan inti dan membentuk gas helium. Diperkirakan sekitar 3000 ton helium dihasilkan per tahun melalui proses ini.[72][73][74] Dalam kerak Bumi, konsentrasi heliumnya adalah sekitar 8 bagian per miliar. Dalam air laut, konsentrasinya hanya sekitar 4 bagian per triliun. Konsentrasi helium yang terbesar di Bumi ditemukan dalam keadaan terperangkap bersamaan dengan gas alam. Dari sinilah kebanyakan helium komersial diekstraksi. Konsentrasinya bervariasi antara beberapa ppm sampai dengan lebih dari 7% seperti yang ada di ladang gas San Juan County, New Mexico.[75][76]
Ekstraksi dan distribusi
Untuk penggunaan dalam skala besar, helium diekstraksi menggunakan distilasi fraksional gas alam, yang dapat mengandung 7% helium.[77] Karena helium memiliki titik didih yang lebih rendah daripada unsur manapun, temperatur rendah dan tekanan tinggi yang digunakan akan mencairkan hampir semua gas lainnya (kebanyakan nitrogen dan metana). Gas helium bruto yang dihasilkan oleh distilasi fraksional kemudian dimurnikan dengan cara menurunkan temperatur gas secara berulang, sehingga kebanyakan nitrogen dan gas lainnya yang masih tersisa akan mengendap keluar dari campuran gas. Arang aktif digunakan dalam langkah akhir pemurnian, yang kemudian akan menghasilkan helium dengan kemurnian 99,995%.[7] Kebanyakan helium yang diproduksi dicairkan melalui proses kriogenik. Pencairan ini diperlukan dalam berbagai aplikasi yang memerlukan helium cair, selain itu, pencairan helium juga memungkinkan para penyuplai gas memotong biaya transpor gas.[35][78]
Pada tahun 2008, sekiranya 169 juta meter kubik standar helium diekstraksi dari gas alam ataupun ditarik dari cadangan helium yang disimpan. Dari keseluruhan produksi helium dunia, 78%-nya berasal dari Amerika Serikat, 10% Aljazair, dan sisanya dari Rusia, Polandia, dan Qatar.[79] Di Amerika Serikat, kebanyakan heliumnya diekstraksi dari gas alam Hugoton dan ladang gas sekitar Kansas, Oklahoma, dan Texas.[35] Dahulu, gas helium yang dihasilkan dari ladang gas ini dikirim melalui pipa jaringan menuju penyimpanan cadangan helium nasional Amerika Serikat. Namun sejak tahun 2005, cadangan helium yang terkumpul ini mulai dilepas dan dijual.
Difusi gas alam melalui membran semipermeabel juga dapat digunakan untuk mendaur ulang dan memurnikan helium.[80] Pada tahun 1996, Amerika Serikat memiliki cadangan helium teruji sebesar 4,2 meter kubik standar.[81] Dengan laju penggunaan helium saat itu (72 juta meter kubik per tahun), cadangan ini cukup untuk digunakan di AS selama 58 tahun. Diperkirakan cadangan yang belum teruji ada sekitar 31-53 trilium meter kubik, atau 1000 kali lebih besar dari cadangan yang telah teruji.[82]
Helium harus diekstraksi dari gas alam karena ia hanya terdapat sedikit sekali di udara bebas, namun permintaan atas helium lebih tinggi. Helium dapat disintesis melalui pemborbardiran litium atau boron dengan proton berkecepatan tinggi, namun proses ini sangat tidak ekonomis.[83]
Helium komersial tersedia dalam bentuk cair maupun gas. Dalam bentuk cairan, helium dapat disuplai menggunakan labu Dewar yang dapat menampung sampai dengan 1000 liter helium, ataupun menggunakan kontainer ISO besar yang berkapasitas sebesar 42 m3. Dalam bentuk gas, sejumlah kecil helium disuplai menggunakan silinder bertekanan tinggi yang dapat menampung sekitar 8 m3 helium. Dalam jumlah besar, tabung trailer yang berkapasitas 4.860 m3 dapat digunakan untuk menyuplai helium dalam bentuk gas.
Advokasi penghematan helium
Menurut konservasionis helium Robert Colemen Richardson, harga pasar helium yang ada sekarang telah mendorong penggunaan helium yang "boros". Harga helium pada tahun 2000-an telah diturunkan oleh keputusan Kongres AS untuk menjual cadangan helium AS dalam jumlah yang besar sampai dengan tahun 2015.[84] Menurut Richardson, harga helium perlu dinaikkan 20 kali lipat untuk mengurangi penggunaan helium yang boros. Dalam buku yang berjudul Future of helium as a natural resource (Masa depan helium sebagai sumber daya alam) (Routledge, 2012), Nuttall, Clarke & Glowacki (2012) juga menggagaskan pembentukan Badan Helium Internasional untuk membangun pasar helium yang berkelanjutan.[85]
Aplikasi
Estimasi penggunaan fraksi helium berdasarkan kategori tahun 2014 di AS. Penggunaan total 34 juta meter kubik.[86]
Kryogenik (32%)
Penekanan dan penggelontoran (18%)
Pengelasan (13%)
Atmosfer terkendali (18%)
Deteksi kebocoran (4%)
Campuran pernapasan (2%)
Lainnya (13%)
Sementara balon mungkin adalah manfaat helium paling terkenal, sejatinya itu hanyalah bagian kecil dari semua penggunaan helium.[30] Helium digunakan pada banyak bidang yang memerlukan keunikan helium, seperti titik didihnya yang rendah, masa jenisnya rendah, kelarutannya juga rendah, konduktivitas termal tinggi, atau keinertannya. Total produksi helium 2014 sekitar 32 juta kg (180 juta meter kubik) helium per tahun, penggunaan terbesar (sekitar 32% dari total 2014) adalah aplikasi kryogenik, sebagian besar sebagai pendingin magnet superkonduktor dalam pemindai MRI bidang medis dan spektrometer Resonansi Magnet Inti (bahasa Inggris: Nuclear Magnetic Resonance, (NMR)).[87] Penggunaan besar lainnya untuk sistem penggelontor dan penekan, pengelasan, pemeliharaan atmosfer terkendali, dan deteksi kebocoran. Penggunaan lain relatif kecil.[86]
Helium digunakan sebagai gas pelindung dalam proses pengelasan bahan yang terkontaminasi dan melemah oleh nitrogen atau udara pada temperatur pengelasan.[6] Sejumlah gas pelindung inert digunakan dalam pengelasan busur gas wolfram, tetapi helium lebih dipilih daripada argon terutama untuk pengelasan bahan yang mempunyai konduktivitas panas yang lebih tinggi, seperti aluminium atau tembaga.
Penggunaan minor
Deteksi kebocoran industri
Salah satu aplikasi helium dalam industri adalah deteksi kebocoran. Oleh karena helium berdifusi melalui bahan padat tiga kali lebih cepat daripada udara, ia digunakan sebaga gas penjejak untuk mendeteksi kebocoran dalam peralatan hampa-tingi (seperti tangki kryogenik) dan wadah bertekanan tinggi.[90] Objek yang diuji dimasukkan ke dalam sebuah bejana, yang kemudian dikosongkan dan diisi dengan helium. Helium dapat keluar melalui kebocoran dan dideteksi oleh peraltan yang peka (spektrometer massa helim), meskipun laju kebocoran sangat kecil hanya 10−9 mbar·L/s (10−10 Pa·m3/s). Prosedur pengukuran berlangsung secara otomatis dan disebut pengujian integral helium. Prosedur yang lebih sederhana adalah dengan mengisi objek yang diuji dengan helium dan dilakukan pencarian kebocoran secara manual menggunakan peralatan portabel.[91]
Pengertian kebocoran helium melalui retakan tidak sama dengan permeasi gas melalui bahan pejal. Sementara helium memiliki tetapan permeasi terdokumentasi (sehingga laju permeasi dapat dihitung) melalui kaca, keramik, dan bahan sintetis, gas inert seperti helium tidak akan menembus sebagian besar logam.[92]
Penerbangan
Oleh karena He lebih ringan daripada udara, balon udara diisi dengan helium sebagai gas pengangkat. Sementara gas hidrogen juga ringan, helium memiliki kelebihan yaitu tidak mudah terbakar (bahkan tahan api). Penggunaan minor lainnya adalah dalam bidang roket, di mana helium digunakan sebagai media ullage untuk mengganti bahan bakar dan oksidator dalam tangki penyimpanan dan untuk mengkondensasikan hidrogen dan oksigen untuk membuat bahan bakar roket. Helium juga digunakan untuk menggelontor bahan bakar dan oksidator dari peralatan pendukung di darat sebelum peluncuran dan untuk mendinginkan hidrogen cair dalam wahana angkasa luar. Sebagai contoh, roket Saturn V yang digunakan dalam program Apollo membutuhkan sekitar 370.000 m3 (13 juga kaki kubik) helium untuk peluncuran.[45]
Inhalasi dan keselamatan
Keselamatan
Helium netral dalam keadaan standar tidak beracun, tidak memainkan peranan biologis yang penting, dan ditemukan dalam jumlah sekelumit dalam darah manusia. Jika helium terhirup dalam jumlah besar sehingganya tiada oksigen yang cukup untuk proses pernapasan normal, asfiksia dapat terjadi. Pada helium kriogenik, temperaturnya yang rendah dapat menyebabkan radang dingin. Selain itu helium cair yang mengembang dengan cepat menjadi gas dapat menyebabkan ledakan apabila tekanan yang timbul tidak dilepaskan dengan segera.
Kontainer gas helium bertemperatur 5 sampai dengan 10 K harus ditangani seolah helium tersebut berwujud cair karena gas ini juga akan mengembang dengan cepat apabila dipanaskan ke temperatur ruangan.[45]
Bermasalah memainkan berkas ini? Lihat bantuan media.
Kelajuan suara dalam media helium hampir tiga kali lebih cepat daripada kelajuan suara dalam udara biasa. Oleh karena frekuensi dasar suatu rongga yang terisi oleh gas berbanding lurus terhadap kelajuan suara dalam gas tersebut, akan terdapat peningkatan pada tinggi nada frekuensi resonansisaluran suara ketika helium terhirup..[6][93] Hal ini menyebabkan perubahan kualitas suara seperti bebek. (Efek yang berlawanan, yakni penurunan frekuensi, dapat dihasilkan dari penghirupan gas padat seperti sulfur heksafluorida ataupun xenon.)
Inhalasi helium dapat berbahaya jika dilakukan secara berlebihan karena helium merupakan gas asfiksian yang dapat menggantikan oksigen dalam paru-paru dan mengganggu pernapasan normal.[6][94] Penghirupan helium murni secara terus menerus dapat menyebabkan kematian yang disebabkan oleh asfiksia dalam beberapa menit.
Inhalasi helium secara langsung dari tabung bertekanan tinggi sangatlah berbahaya karena laju aliran udara yang tinggi akan menyebabkan barotrauma dan memecahkan jaringan paru-paru.[94][95] Walau demikian, kasus kematian yang disebabkan oleh helium cukup jarang.[95]
Di bawah tekanan tinggi (lebih besar daripada 20 atm atau 2 MPa), campuran helium dan oksigen (helioks) dapat menimbulkan sindrom saraf tekanan tinggi. Penambahan sejumlah kecil gas nitrogen dalam campuran tersebut dapat mengatasi masalah tersebut.[96][97]
Gambar tambahan
Skema 3D atom Helium
Referensi
^(Indonesia)"Helium". KBBI Daring. Diakses tanggal 17 Juli 2022.
^Shuen-Chen Hwang, Robert D. Lein, Daniel A. Morgan (2005). "Noble Gases". Kirk Othmer Encyclopedia of Chemical Technology. Wiley. pp. 343–383. doi:10.1002/0471238961.0701190508230114.a01.
^Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. hlm. E110. ISBN0-8493-0464-4.
^Kochhar, R. K. (1991). "French astronomers in India during the 17th – 19th centuries". Journal of the British Astronomical Association. 101 (2): 95–100. Bibcode:1991JBAA..101...95K.
^ abcdefghijEmsley, John (2001). Nature's Building Blocks. Oxford: Oxford University Press. hlm. 175–179. ISBN0-19-850341-5.
^ abcdefghijklmnopqrstClifford A. Hampel (1968). The Encyclopedia of the Chemical Elements. New York: Van Nostrand Reinhold. hlm. 256–268. ISBN0-442-15598-0.
^"Helium". Oxford English Dictionary. 2008. Diakses tanggal 2008-07-20.
^Thomson, William (Aug. 3, 1871). "Inaugural Address of Sir William Thompson". Nature. 4: 261–278 [268]. Bibcode:1871Natur...4..261.. doi:10.1038/004261a0. Diarsipkan dari versi asli tanggal 2023-10-01. Diakses tanggal 2013-02-03. Frankland and Lockyer find the yellow prominences to give a very decided bright line not far from D, but hitherto not identified with any terrestrial flame. It seems to indicate a new substance, which they propose to call HeliumPeriksa nilai tanggal di: |date= (bantuan)
^Ramsay, William (1895). "On a Gas Showing the Spectrum of Helium, the Reputed Cause of D3 , One of the Lines in the Coronal Spectrum. Preliminary Note". Proceedings of the Royal Society of London. 58 (347–352): 65–67. doi:10.1098/rspl.1895.0006.
^Ramsay, William (1895). "Helium, a Gaseous Constituent of Certain Minerals. Part I". Proceedings of the Royal Society of London. 58 (347–352): 80–89. doi:10.1098/rspl.1895.0010.
^Ramsay, William (1895). "Helium, a Gaseous Constituent of Certain Minerals. Part II--". Proceedings of the Royal Society of London. 59 (1): 325–330. doi:10.1098/rspl.1895.0097.
^(Jerman) Langlet, N. A. (1895). "Das Atomgewicht des Heliums". Zeitschrift für anorganische Chemie (dalam bahasa German). 10 (1): 289–292. doi:10.1002/zaac.18950100130.Pemeliharaan CS1: Bahasa yang tidak diketahui (link)
^Munday, Pat (1999). John A. Garraty and Mark C. Carnes, ed. Biographical entry for W.F. Hillebrand (1853–1925), geochemist and U.S. Bureau of Standards administrator in American National Biography. 10–11. Oxford University Press. hlm. 808–9; 227–8.
^Osheroff, D. D.; Richardson, R. C.; Lee, D. M. (1972). "Evidence for a New Phase of Solid He3". Phys. Rev. Lett. 28 (14): 885–888. Bibcode:1972PhRvL..28..885O. doi:10.1103/PhysRevLett.28.885.Pemeliharaan CS1: Banyak nama: authors list (link)
^McFarland, D. F. (1903). "Composition of Gas from a Well at Dexter, Kan". Transactions of the Kansas Academy of Science. 19: 60–62. doi:10.2307/3624173. JSTOR3624173.
^Cady, H.P.; McFarland, D. F. (1906). "Helium in Kansas Natural Gas". Transactions of the Kansas Academy of Science. 20: 80–81. doi:10.2307/3624645. JSTOR3624645.Pemeliharaan CS1: Banyak nama: authors list (link)
^Emme, Eugene M.comp., ed. (1961). "Aeronautics and Astronautics Chronology, 1920–1924". Aeronautics and Astronautics: An American Chronology of Science and Technology in the Exploration of Space, 1915–1960. Washington, D.C.: NASA. hlm. 11–19. Diarsipkan dari versi asli tanggal 2019-07-14. Diakses tanggal 2008-07-20.
^Hilleret, N. (1999). "Leak Detection". Dalam S. Turner. CERN Accelerator School, vacuum technology: proceedings: Scanticon Conference Centre, Snekersten, Denmark, 28 May – 3 June 1999(PDF). Geneva, Switzerland: CERN. hlm. 203–212. Diarsipkan dari versi asli tanggal 2019-07-15. Diakses tanggal 2013-02-05. At the origin of the helium leak detection method was the Manhattan Project and the unprecedented leak-tightness requirements needed by the uranium enrichment plants. The required sensitivity needed for the leak checking led to the choice of a mass spectrometer designed by Dr. A.O.C. Nier tuned on the helium mass.
^Williamson, John G. (1968). "Energy for Kansas". Transactions of the Kansas Academy of Science. Kansas Academy of Science. 71 (4): 432–438. doi:10.2307/3627447. JSTOR3627447.
^"Conservation Helium Sale"(PDF). Federal Register. 70 (193): 58464. 2005-10-06. Diarsipkan(PDF) dari versi asli tanggal 2008-10-31. Diakses tanggal 2008-07-20.
^ abStwertka, Albert (1998). Guide to the Elements: Revised Edition. New York; Oxford University Press, p. 24. ISBN 0-19-512708-0
^Mullins, P.V.; Goodling, R. M. (1951). Helium. Bureau of Mines / Minerals yearbook 1949. hlm. 599–602. Diarsipkan dari versi asli tanggal 2008-12-06. Diakses tanggal 2008-07-20.Pemeliharaan CS1: Banyak nama: authors list (link)
^ abcSmith, E.M.; Goodwin, T.W.; Schillinger, J. (2003). "Challenges to the Worldwide Supply of Helium in the Next Decade". Advances in Cryogenic Engineering. 49. A (710): 119–138. doi:10.1063/1.1774674.Pemeliharaan CS1: Banyak nama: authors list (link)
^Basu, Sourish (October 2007). Yam, Philip, ed. "Updates: Into Thin Air". Scientific American. 297 (4). Scientific American, Inc. hlm. 18. Diarsipkan dari versi asli tanggal 2008-12-06. Diakses tanggal 2008-08-04.
^Weiss, Ray F. (1971). "Solubility of helium and neon in water and seawater". J. Chem. Eng. Data. 16 (2): 235–241. doi:10.1021/je60049a019.
^Stone, Jack A.; Stejskal, Alois (2004). "Using helium as a standard of refractive index: correcting errors in a gas refractometer". Metrologia. 41 (3): 189–197. Bibcode:2004Metro..41..189S. doi:10.1088/0026-1394/41/3/012.Pemeliharaan CS1: Banyak nama: authors list (link)
^Buhler, F.; Axford, W. I.; Chivers, H. J. A.; Martin, K. (1976). "Helium isotopes in an aurora". J. Geophys. Res. 81 (1): 111–115. Bibcode:1976JGR....81..111B. doi:10.1029/JA081i001p00111.Pemeliharaan CS1: Banyak nama: authors list (link)
^ abcdeLide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (edisi ke-86). Boca Raton (FL): CRC Press. ISBN0-8493-0486-5.
^Grilly, E. R. (1973). "Pressure-volume-temperature relations in liquid and solid 4He". Journal of Low Temperature Physics. 11 (1–2): 33–52. Bibcode:1973JLTP...11...33G. doi:10.1007/BF00655035.
^Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (edisi ke-86). Boca Raton (FL): CRC Press. hlm. 6-120. ISBN0-8493-0486-5.
^Hohenberg, P. C.; Martin, P. C. (2000). "Microscopic Theory of Superfluid Helium". Annals of Physics. 281 (1–2): 636–705 12091211. Bibcode:2000AnPhy.281..636H. doi:10.1006/aphy.2000.6019.Pemeliharaan CS1: Banyak nama: authors list (link)
^ abAnderson, Don L.; Foulger, G. R.; Meibom, A. (2006-09-02). "Helium Fundamentals". MantlePlumes.org. Diarsipkan dari versi asli tanggal 2007-02-08. Diakses tanggal 2008-07-20.Pemeliharaan CS1: Banyak nama: authors list (link)
^"Lunar Mining of Helium-3". Fusion Technology Institute of the University of Wisconsin-Madison. 2007-10-19. Diarsipkan dari versi asli tanggal 2010-06-09. Diakses tanggal 2008-07-09.
^Saunders, Martin Hugo; Jiménez-Vázquez, A.; Cross, R. James; Poreda; Robert J. (1993). "Stable Compounds of Helium and Neon: He@C60 and Ne@C60". Science. 259 (5100): 1428–1430. Bibcode:1993Sci...259.1428S. doi:10.1126/science.259.5100.1428. PMID17801275.Pemeliharaan CS1: Banyak nama: authors list (link)
^Saunders, M.; et al. (1994). "Probing the interior of fullerenes by 3He NMR spectroscopy of endohedral 3He@C60 and 3He@C70". Nature. 367 (6460): 256–258. Bibcode:1994Natur.367..256S. doi:10.1038/367256a0.Pemeliharaan CS1: Penggunaan et al. yang eksplisit (link)
^Oliver, B. M.; Bradley, James G. (1984). "Helium concentration in the Earth's lower atmosphere". Geochimica et Cosmochimica Acta. 48 (9): 1759–1767. Bibcode:1984GeCoA..48.1759O. doi:10.1016/0016-7037(84)90030-9.Pemeliharaan CS1: Banyak nama: authors list (link)
^Lie-Svendsen, Ø.; Rees, M. H. (1996). "Helium escape from the terrestrial atmosphere: The ion outflow mechanism". Journal of Geophysical Research. 101 (A2): 2435–2444. Bibcode:1996JGR...101.2435L. doi:10.1029/95JA02208.Pemeliharaan CS1: Banyak nama: authors list (link)
^Winter, Mark (2008). "Helium: the essentials". University of Sheffield. Diarsipkan dari versi asli tanggal 2019-04-04. Diakses tanggal 2008-07-14.
^Cai, Z.; et al. (2007). Modelling Helium Markets(PDF). University of Cambridge. Diarsipkan dari versi asli(PDF) tanggal 2009-03-26. Diakses tanggal 2008-07-14.Pemeliharaan CS1: Penggunaan et al. yang eksplisit (link)
^"Helium"(PDF). Mineral Commodity Summaries. U.S. Geological Survey. 2009. hlm. 74–75. Diarsipkan(PDF) dari versi asli tanggal 2009-08-14. Diakses tanggal 2009-12-19.
^Belyakov, V.P.; Durgar'yan, S. G.; Mirzoyan, B. A. (1981). "Membrane technology—A new trend in industrial gas separation". Chemical and Petroleum Engineering. 17 (1): 19–21. doi:10.1007/BF01245721.Pemeliharaan CS1: Banyak nama: authors list (link)
^Committee on the Impact of Selling, see table for total proven US reserves
^Committee on the Impact of Selling, See table 4.2 for the reserve estimate and page 47 for the unproven reserve estimate.
^Nuttall, William J. (2012). "Resources: Stop squandering helium". Nature (dalam bahasa english). Nature Publishing Group, Macmillan Publishers Ltd. 485 (7400): 573–575. doi:10.1038/485573a. Diarsipkan dari versi asli tanggal 2023-10-01. Diakses tanggal 2012-09-23.Parameter |coauthors= yang tidak diketahui mengabaikan (|author= yang disarankan) (bantuan)Pemeliharaan CS1: Bahasa yang tidak diketahui (link)
^ ab(Jerman) Grassberger, Martin; Krauskopf, Astrid (2007). "Suicidal asphyxiation with helium: Report of three cases Suizid mit Helium Gas: Bericht über drei Fälle". Wiener Klinische Wochenschrift (dalam bahasa German & English). 119 (9–10): 323–325. doi:10.1007/s00508-007-0785-4. PMID17571238.Pemeliharaan CS1: Banyak nama: authors list (link) Pemeliharaan CS1: Bahasa yang tidak diketahui (link)
The Encyclopedia of the Chemical Elements, disunting oleh Cifford A. Hampel, "Helium" artikel oleh L. W. Brandt (New York; Reinhold Book Corporation; 1968; halaman 256-267) Library of Congress Catalog Card Number: 68-29938
Emsley,John (2001), Nature's Building Blocks: An A-Z Guide to the Elements, New York: Oxford University Press, hlm. 175–179, ISBN0-19-850340-7
Los Alamos National Laboratory (LANL.gov): Periodic Table, "Helium" [1] (ditilik pada 10 Oktober 2002 dan 25 Maret 2005)
Guide to the Elements: Revised Edition, oleh Albert Stwertka (New York; Oxford University Press; 1998; halaman 22-24) ISBN 0-19-512708-0
The Elements: Third Edition, oleh John Emsley (New York; Oxford University Press; 1998; halaman 94-95) ISBN 0-19-855818-X
United States Geological Survei (usgs.gov): Mineral Information for Helium [2] (ditilik 31 Maret 2005)
The thermosphere: a part of the heterosphere, oleh J. Vercheval [3]Diarsipkan 2004-10-30 di Wayback Machine. (ditilik 1 Apr 2005)
Isotopic Composition and Abundance of Interstellar Neutral Helium Based on Direct Measurements, Zastenker G.N. et al., [4], dipublikasikan di Astrophysics, April 2002, vol. 45, no. 2, pp. 131–142(12)
Topik artikel ini mungkin tidak memenuhi kriteria kelayakan umum. Harap penuhi kelayakan artikel dengan: menyertakan sumber-sumber tepercaya yang independen terhadap subjek dan sebaiknya hindari sumber-sumber trivial. Jika tidak dipenuhi, artikel ini harus digabungkan, dialihkan ke cakupan yang lebih luas, atau dihapus oleh Pengurus.Cari sumber: Doel Arif – berita · surat kabar · buku · cendekiawan · JSTOR (Pelajari cara dan kapan saatnya untuk menghapus …
Citra satelit dari Kawasan Metropolitan Bangkok : Daerah perkotaan di tepi dan sepanjang jalan arteri merupakan ruang desakota. Sebuah jalur batas kota desa pinggiran kota yang terletak di Distrik Baiyun, Guangzhou, Tiongkok. Baiyun terkenal oleh penduduk setempat sebagai daerah desakota di Guangzhou . Desakota adalah istilah yang digunakan dalam geografi perkotaan yang digunakan untuk mendeskripsikan wilayah di antara lingkungan kota-kota besar. Daerah desakota ini berada di wilayah perkot…
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (يناير 2022) هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (ي…
لمعانٍ أخرى، طالع روبرت بيل (توضيح). هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يونيو 2019) روبرت بيل معلومات شخصية الميلاد سنة 1827 تورونتو تاريخ الوفاة سنة 1883 (55–56 سنة) مواطنة كندا عضو في الأخو…
Untuk kegunaan lain, lihat Thomas Merton (disambiguasi). Thomas MertonLahir(1915-01-31)31 Januari 1915Prades, Pyrénées-Orientales, PrancisMeninggal10 Desember 1968(1968-12-10) (umur 53)Bangkok, ThailandTempat tinggalBiara Maria Bunda Getsemani,Kentucky, Amerika SerikatPekerjaanPenulis, rahib TrapisDikenal atas The Seven Storey Mountain (1948) Pastor Louis, O.C.S.O.ImamatTahbisan imam26 Mei 1949Informasi pribadiDenominasiKatolik Roma Bagian dari seri tentangMistisisme Kristiani Teologi…
Pour les articles homonymes, voir ANSP. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne s'appuie pas, ou pas assez, sur des sources secondaires ou tertiaires (décembre 2021). Pour améliorer la vérifiabilité de l'article ainsi que son intérêt encyclopédique, il est nécessaire, quand des sources primaires sont citées, de les associer à des analyses faites par des sources secondaires. Agence nationale de santé publiqueLogo de l'agence natio…
American judge S. Harrison WhiteMember of the U.S. House of Representativesfrom Colorado's 1st districtIn officeNovember 15, 1927 – March 3, 1929Preceded byWilliam VaileSucceeded byWilliam R. EatonJustice of the State Supreme CourtIn office1909–1919Chief justice of the Colorado Supreme CourtIn office1917–1918 Personal detailsBornSebastian Harrison White(1864-12-24)December 24, 1864near Maries County, Missouri, USDiedDecember 21, 1945(1945-12-21) (aged 80)Colorado …
Russian political scientist (born 1956) In this name that follows Eastern Slavic naming customs, the patronymic is Alekseyevich and the family name is Nikonov. You can help expand this article with text translated from the corresponding article in Russian. (February 2024) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that th…
DFB-Pokal Généralités Sport Football Création 1935 Organisateur(s) DFB Éditions 81 Catégorie Coupe nationale Périodicité Annuelle Lieu(x) Allemagne Participants 64 Statut des participants professionnels, semi-proset amateurs Site web officiel dfb.de Palmarès Tenant du titre RB Leipzig (2023) Plus titré(s) Bayern Munich (20) Meilleur(s) buteur(s) Gerd Müller (78) Plus d'apparitions Mirko Votava (79) Pour la dernière compétition voir : Coupe d'Allemagne de football 2023-2024…
Final Piala Generalísimo 1954TurnamenPiala Generalísimo 1954 Valencia Barcelona 3 0 Tanggal20 Juni 1954StadionStadion Chamartín, MadridWasitJosé Luis González EcheverríaPenonton110.000← 1953 1955 → Final Piala Generalísimo 1954 adalah pertandingan final ke-50 dari turnamen sepak bola Piala Generalísimo untuk menentukan juara musim 1954. Pertandingan ini diikuti oleh Valencia dan Barcelona dan diselenggarakan pada 20 Juni 1954 di Stadion Chamartín, Madrid. Valencia memenangka…
«Дельфийский возничий», ок. 475 г. до н. э., Археологический музей, Дельфы. Один из немногих сохранившихся оригиналов античной бронзы Искусство Древней Греции — период в истории европейского искусства, охватывающий время примерно с 1050 года до н. э. до эпохи Римской им…
Historical political division of China and Japan CircuitThe inspection circuits of the Tang dynasty in 742[1]Dao (mainly Tang dynasty)Chinese道Literal meaningway, path, circuitTranscriptionsStandard MandarinHanyu PinyindàoBopomofoㄉㄠˋWade–GilestaoLu (Song and Jin dynasties)Chinese路TranscriptionsStandard MandarinHanyu PinyinlùKorean nameHangul도Hanja道TranscriptionsRevised RomanizationdoMcCune–ReischauertoJapanese nameKanji道KanaどうTranscriptionsRomanizationdō A circui…
County in New York, United States Not to be confused with Tompkins, New York. County in New YorkTompkins CountyCounty Images, from top down, left to right: Ithaca Falls, Johnson Museum of Art, Allan H. Treman State Marine Park, Stewart Park, Ithaca Commons, and Cornell University FlagSealLocation within the U.S. state of New YorkNew York's location within the U.S.Coordinates: 42°27′N 76°28′W / 42.45°N 76.47°W / 42.45; -76.47Country United StatesState New…
Digitized archive of British newspapers British Newspaper ArchiveOwnerBrightsolidURLwww.britishnewspaperarchive.co.ukLaunchedNovember 2011; 12 years ago (2011-11)Current statusActive The British Newspaper Archive web site provides access to searchable digitized archives of British and Irish newspapers. It was launched in November 2011. History The former British Library Newspapers, Colindale, since demolished The British Library Newspapers section was based in Colinda…
This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: List of Azteca América affiliates – news · newspapers · books · scholar · JSTOR (January 2023) Main article: Azteca América The following is a list of affiliates for the American Spanish language television network Azteca América, which was in operati…
Pour les articles homonymes, voir Helmand. Helmand هلمند Administration Pays Afghanistan Type Province Capitale Lashkar Gah Démographie Population 940 200 hab. (est. 2016[1]) Densité 16 hab./km2 Géographie Superficie 58 584 km2 modifier Iran et Afghanistan : le bassin endoréique du Sistan et le fleuve Helmand (ou Hilmand) Districts de la province d'Helmand Helmand est une province du sud-ouest de l'Afghanistan. Sa capitale est Lashkar Gah. Elle est ir…
Operation PantherPart of Northern Mali conflict and Operation ServalAdrar des IfoghasDate19 February – 25 March 2013(1 month and 6 days)LocationAdrar des Ifoghas, MaliResult French VictoryBelligerents France Chad AQIM Ansar DineCommanders and leaders Bernard Barrera Mahamat Idriss Déby Itno Abdelhamid Abou Zeid †Strength 1,200800 troops 400-500 terroristsCasualties and losses 3 killed120 wounded1 armoured vehicle destroyed27 killed67-71 wounded 200-250 killed2…