Numero algebricoIn matematica, un numero algebrico è un numero reale o complesso che è soluzione di un'equazione polinomiale della forma: dove , ogni è un intero, e è diverso da . In una definizione equivalente si richiede che i coefficienti del polinomio siano numeri razionali. È sufficiente moltiplicare l'identità per un multiplo comune a tutti i denominatori dei coefficienti per ricondursi al caso intero. Esempi di numeri algebrici
Grado di un numero algebricoSe un numero algebrico soddisfa un'equazione come quella data sopra con un polinomio di grado e nessuna equazione di grado inferiore, allora si dice che il numero è un numero algebrico di grado . Per ogni intero esistono degli algebrici di grado : infatti, attraverso il criterio di Eisenstein, è possibile costruire polinomi irriducibili a coefficienti razionali di grado qualunque: esso sarà il polinomio minimo di qualche algebrico, che sarà quindi di grado . Cardinalità dell'insieme dei numeri algebriciQuello dei numeri algebrici è un insieme numerabile: infatti l'insieme dei polinomi a coefficienti interi (o razionali) è numerabile e le soluzioni di ciascun polinomio sono in numero finito. L'insieme di tutte le soluzioni, essendo unione di una famiglia numerabile di insiemi finiti, è a sua volta numerabile. Numeri trascendentiSe un numero reale (o complesso) non è un numero algebrico, viene chiamato numero trascendente. In conseguenza di quanto già detto per gli algebrici, la cardinalità dei numeri trascendenti è pari a quella del campo di partenza. Il campo dei numeri algebriciLe operazioni di somma, differenza, prodotto e quoziente di due numeri algebrici generano ancora numeri algebrici, pertanto essi formano un campo, indicabile con . Si può dimostrare che se ammettiamo che i coefficienti siano numeri algebrici qualsiasi, allora ogni soluzione dell'equazione sarà ancora un numero algebrico. Ciò può essere espresso in altre parole dicendo che il campo dei numeri algebrici è algebricamente chiuso. Infatti, è il più piccolo campo algebricamente chiuso che contiene i numeri razionali, ed è quindi chiamato la chiusura algebrica dei razionali. Numeri definiti da radicaliTutti i numeri che possono essere scritti usando un numero finito di addizioni, sottrazioni, moltiplicazioni, divisioni ed estrazioni di radici -esime (dove è un intero positivo) sono anche algebrici. L'inverso, tuttavia, non è vero: vi sono numeri algebrici che non possono essere scritti in questa maniera. Si tratta delle soluzioni delle equazioni polinomiali di grado superiore al quarto. Questo è un risultato della teoria di Galois. Interi algebriciUn numero algebrico che soddisfa un'equazione polinomiale di grado con (cioè, un polinomio monico a coefficienti interi), è chiamato intero algebrico. Esempi di interi algebrici sono e e . Somma, differenza e prodotto di interi algebrici sono di nuovo interi algebrici, che implica che gli interi algebrici formano un anello. Il nome intero algebrico è dovuto al fatto che gli unici numeri razionali appartenenti a questa classe sono gli interi. Se è un campo numerico, il suo anello di interi è il sottoanello degli interi algebrici in . Classi speciali di numeri algebrici
Voci correlateAltri progetti
Collegamenti esterni
|