Share to: share facebook share twitter share wa share telegram print page

Cantor's theorem

The cardinality of the set {x, y, z}, is three, while there are eight elements in its power set (3 < 23 = 8), here ordered by inclusion.

In mathematical set theory, Cantor's theorem is a fundamental result which states that, for any set , the set of all subsets of known as the power set of has a strictly greater cardinality than itself.

For finite sets, Cantor's theorem can be seen to be true by simple enumeration of the number of subsets. Counting the empty set as a subset, a set with elements has a total of subsets, and the theorem holds because for all non-negative integers.

Much more significant is Cantor's discovery of an argument that is applicable to any set, and shows that the theorem holds for infinite sets also. As a consequence, the cardinality of the real numbers, which is the same as that of the power set of the integers, is strictly larger than the cardinality of the integers; see Cardinality of the continuum for details.

The theorem is named for Georg Cantor, who first stated and proved it at the end of the 19th century. Cantor's theorem had immediate and important consequences for the philosophy of mathematics. For instance, by iteratively taking the power set of an infinite set and applying Cantor's theorem, we obtain an endless hierarchy of infinite cardinals, each strictly larger than the one before it. Consequently, the theorem implies that there is no largest cardinal number (colloquially, "there's no largest infinity").

Proof

Cantor's argument is elegant and remarkably simple. The complete proof is presented below, with detailed explanations to follow.

Theorem (Cantor) — Let be a map from set to its power set . Then is not surjective. As a consequence, holds for any set .

Proof

exists via the axiom schema of specification, and because .
Assume is surjective.
Then there exists a such that .
From  for all in , we deduce    via universal instantiation.
The previous deduction yields a contradiction of the form , since .
Therefore, is not surjective, via reductio ad absurdum.
We know injective maps from to exist. For example, a function such that .
Consequently, . ∎

By definition of cardinality, we have for any two sets and if and only if there is an injective function but no bijective function from to . It suffices to show that there is no surjection from to . This is the heart of Cantor's theorem: there is no surjective function from any set to its power set. To establish this, it is enough to show that no function (that maps elements in to subsets of ) can reach every possible subset, i.e., we just need to demonstrate the existence of a subset of that is not equal to for any . Recalling that each is a subset of , such a subset is given by the following construction, sometimes called the Cantor diagonal set of :[1][2]

This means, by definition, that for all , if and only if . For all the sets and cannot be equal because was constructed from elements of whose images under did not include themselves. For all either or . If then cannot equal because by assumption and by definition. If then cannot equal because by assumption and by the definition of .

Equivalently, and slightly more formally, we have just proved that the existence of such that implies the following contradiction:

Therefore, by reductio ad absurdum, the assumption must be false.[3] Thus there is no such that  ; in other words, is not in the image of and does not map onto every element of the power set of , i.e., is not surjective.

Finally, to complete the proof, we need to exhibit an injective function from to its power set. Finding such a function is trivial: just map to the singleton set . The argument is now complete, and we have established the strict inequality for any set that .

Another way to think of the proof is that , empty or non-empty, is always in the power set of . For to be onto, some element of must map to . But that leads to a contradiction: no element of can map to because that would contradict the criterion of membership in , thus the element mapping to must not be an element of meaning that it satisfies the criterion for membership in , another contradiction. So the assumption that an element of maps to must be false; and cannot be onto.

Because of the double occurrence of in the expression "", this is a diagonal argument. For a countable (or finite) set, the argument of the proof given above can be illustrated by constructing a table in which

  1. each row is labelled by a unique from , in this order. is assumed to admit a linear order so that such table can be constructed.
  2. each column of the table is labelled by a unique from the power set of ; the columns are ordered by the argument to , i.e. the column labels are , ..., in this order.
  3. the intersection of each row and column records a true/false bit whether .

Given the order chosen for the row and column labels, the main diagonal of this table thus records whether for each . One such table will be the following: The set constructed in the previous paragraphs coincides with the row labels for the subset of entries on this main diagonal (which in above example, coloured red) where the table records that is false.[3] Each row records the values of the indicator function of the set corresponding to the column. The indicator function of coincides with the logically negated (swap "true" and "false") entries of the main diagonal. Thus the indicator function of does not agree with any column in at least one entry. Consequently, no column represents .

Despite the simplicity of the above proof, it is rather difficult for an automated theorem prover to produce it. The main difficulty lies in an automated discovery of the Cantor diagonal set. Lawrence Paulson noted in 1992 that Otter could not do it, whereas Isabelle could, albeit with a certain amount of direction in terms of tactics that might perhaps be considered cheating.[2]

When A is countably infinite

Let us examine the proof for the specific case when is countably infinite. Without loss of generality, we may take , the set of natural numbers.

Suppose that is equinumerous with its power set . Let us see a sample of what looks like:

Indeed, contains infinite subsets of , e.g. the set of all positive even numbers , along with the empty set .

Now that we have an idea of what the elements of are, let us attempt to pair off each element of with each element of to show that these infinite sets are equinumerous. In other words, we will attempt to pair off each element of with an element from the infinite set , so that no element from either infinite set remains unpaired. Such an attempt to pair elements would look like this:

Given such a pairing, some natural numbers are paired with subsets that contain the very same number. For instance, in our example the number 2 is paired with the subset {1, 2, 3}, which contains 2 as a member. Let us call such numbers selfish. Other natural numbers are paired with subsets that do not contain them. For instance, in our example the number 1 is paired with the subset {4, 5}, which does not contain the number 1. Call these numbers non-selfish. Likewise, 3 and 4 are non-selfish.

Using this idea, let us build a special set of natural numbers. This set will provide the contradiction we seek. Let be the set of all non-selfish natural numbers. By definition, the power set contains all sets of natural numbers, and so it contains this set as an element. If the mapping is bijective, must be paired off with some natural number, say . However, this causes a problem. If is in , then is selfish because it is in the corresponding set, which contradicts the definition of . If is not in , then it is non-selfish and it should instead be a member of . Therefore, no such element which maps to can exist.

Since there is no natural number which can be paired with , we have contradicted our original supposition, that there is a bijection between and .

Note that the set may be empty. This would mean that every natural number maps to a subset of natural numbers that contains . Then, every number maps to a nonempty set and no number maps to the empty set. But the empty set is a member of , so the mapping still does not cover .

Through this proof by contradiction we have proven that the cardinality of and cannot be equal. We also know that the cardinality of cannot be less than the cardinality of because contains all singletons, by definition, and these singletons form a "copy" of inside of . Therefore, only one possibility remains, and that is that the cardinality of is strictly greater than the cardinality of , proving Cantor's theorem.

Cantor's theorem and its proof are closely related to two paradoxes of set theory.

Cantor's paradox is the name given to a contradiction following from Cantor's theorem together with the assumption that there is a set containing all sets, the universal set . In order to distinguish this paradox from the next one discussed below, it is important to note what this contradiction is. By Cantor's theorem for any set . On the other hand, all elements of are sets, and thus contained in , therefore .[1]

Another paradox can be derived from the proof of Cantor's theorem by instantiating the function f with the identity function; this turns Cantor's diagonal set into what is sometimes called the Russell set of a given set A:[1]

The proof of Cantor's theorem is straightforwardly adapted to show that assuming a set of all sets U exists, then considering its Russell set RU leads to the contradiction:

This argument is known as Russell's paradox.[1] As a point of subtlety, the version of Russell's paradox we have presented here is actually a theorem of Zermelo;[4] we can conclude from the contradiction obtained that we must reject the hypothesis that RUU, thus disproving the existence of a set containing all sets. This was possible because we have used restricted comprehension (as featured in ZFC) in the definition of RA above, which in turn entailed that

Had we used unrestricted comprehension (as in Frege's system for instance) by defining the Russell set simply as , then the axiom system itself would have entailed the contradiction, with no further hypotheses needed.[4]

Despite the syntactical similarities between the Russell set (in either variant) and the Cantor diagonal set, Alonzo Church emphasized that Russell's paradox is independent of considerations of cardinality and its underlying notions like one-to-one correspondence.[5]

History

Cantor gave essentially this proof in a paper published in 1891 "Über eine elementare Frage der Mannigfaltigkeitslehre",[6] where the diagonal argument for the uncountability of the reals also first appears (he had earlier proved the uncountability of the reals by other methods). The version of this argument he gave in that paper was phrased in terms of indicator functions on a set rather than subsets of a set.[7] He showed that if f is a function defined on X whose values are 2-valued functions on X, then the 2-valued function G(x) = 1 − f(x)(x) is not in the range of f.

Bertrand Russell has a very similar proof in Principles of Mathematics (1903, section 348), where he shows that there are more propositional functions than objects. "For suppose a correlation of all objects and some propositional functions to have been affected, and let phi-x be the correlate of x. Then "not-phi-x(x)," i.e. "phi-x does not hold of x" is a propositional function not contained in this correlation; for it is true or false of x according as phi-x is false or true of x, and therefore it differs from phi-x for every value of x." He attributes the idea behind the proof to Cantor.

Ernst Zermelo has a theorem (which he calls "Cantor's Theorem") that is identical to the form above in the paper that became the foundation of modern set theory ("Untersuchungen über die Grundlagen der Mengenlehre I"), published in 1908. See Zermelo set theory.

Generalizations

Lawvere's fixed-point theorem provides for a broad generalization of Cantor's theorem to any category with finite products in the following way:[8] let be such a category, and let be a terminal object in . Suppose that is an object in and that there exists an endomorphism that does not have any fixed points; that is, there is no morphism that satisfies . Then there is no object of such that a morphism can parameterize all morphisms . In other words, for every object and every morphism , an attempt to write maps as maps of the form must leave out at least one map .

See also

References

  1. ^ a b c d Abhijit Dasgupta (2013). Set Theory: With an Introduction to Real Point Sets. Springer Science & Business Media. pp. 362–363. ISBN 978-1-4614-8854-5.
  2. ^ a b Lawrence Paulson (1992). Set Theory as a Computational Logic (PDF). University of Cambridge Computer Laboratory. p. 14.
  3. ^ a b Graham Priest (2002). Beyond the Limits of Thought. Oxford University Press. pp. 118–119. ISBN 978-0-19-925405-7.
  4. ^ a b Heinz-Dieter Ebbinghaus (2007). Ernst Zermelo: An Approach to His Life and Work. Springer Science & Business Media. pp. 86–87. ISBN 978-3-540-49553-6.
  5. ^ Church, A. [1974] "Set theory with a universal set." in Proceedings of the Tarski Symposium. Proceedings of Symposia in Pure Mathematics XXV, ed. L. Henkin, Providence RI, Second printing with additions 1979, pp. 297−308. ISBN 978-0-8218-7360-1. Also published in International Logic Review 15 pp. 11−23.
  6. ^ Cantor, Georg (1891), "Über eine elementare Frage der Mannigfaltigskeitslehre", Jahresbericht der Deutschen Mathematiker-Vereinigung (in German), 1: 75–78, also in Georg Cantor, Gesammelte Abhandlungen mathematischen und philosophischen Inhalts, E. Zermelo, 1932.
  7. ^ A. Kanamori, "The Empty Set, the Singleton, and the Ordered Pair", p.276. Bulletin of Symbolic Logic vol. 9, no. 3, (2003). Accessed 21 August 2023.
  8. ^ F. William Lawvere; Stephen H. Schanuel (2009). Conceptual Mathematics: A First Introduction to Categories. Cambridge University Press. Session 29. ISBN 978-0-521-89485-2.

Read other articles:

Peta region dan munisipalitas di Trinidad dan Tobago Region dan munisipalitas adalah wilayah administratif tingkat satu di Trinidad dan Tobago. Trinidad Region di Trinidad No. Nama Ibu kota Kode Luas(km²) Populasi(sensus 2011) 1 Couva–Tabaquite–Talparo Couva TT-CTT 723 178,410 2 Diego Martin Diego Martin TT-DMN 126 102,957 3 Mayaro–Rio Claro Mayaro TT-MRC 814 35,650 4 Penal–Debe Penal TT-PED 246 89,392 5 Princes Town Princes Town TT-PRT 620 102,375 6 San Juan–Laventille San Juan TT-SJ…

  Grand Prix Catalan 2018Detail lombaLomba ke 7 dari 19Grand Prix Sepeda Motor musim 2018Tanggal17 Juni 2018Nama resmiGran Premi Monster Energy de Catalunya[1]LokasiCircuit de Barcelona-Catalunya, Montmeló, SpanyolSirkuitFasilitas balapan permanen4.627 km (2.875 mi)MotoGPPole positionPembalap Jorge Lorenzo DucatiCatatan waktu 1:38.680 Putaran tercepatPembalap Jorge Lorenzo DucatiCatatan waktu 1:40.021 di lap 9 PodiumPertama Jorge Lorenzo DucatiKedua Marc Márquez Hon…

artikel ini tidak memiliki pranala ke artikel lain. Tidak ada alasan yang diberikan. Bantu kami untuk mengembangkannya dengan memberikan pranala ke artikel lain secukupnya. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada April 2012. Batik Cuwiri mer…

FC Pro Vercelli 1892Calcio Leoni, Bianche Casacche, Eusebiani, Bianchi Piemontesi, Bicciolani[1] Segni distintivi Uniformi di gara Casa Trasferta Colori sociali Bianco Simboli Leone Inno Forza Pro!Luciano Angeleri[2] Dati societari Città Vercelli Nazione  Italia Confederazione UEFA Federazione FIGC Campionato Serie C Fondazione 1903 Rifondazione1990Rifondazione2010 Presidente Paolo Pinciroli Allenatore Andrea Dossena Stadio Silvio Piola(5 500 posti) Sito web www.fcprov…

Swiss air-dried meat BündnerfleischAlternative namesBindenfleisch, Grisons Meat, Viande des GrisonsPlace of originSwitzerlandRegion or stateGraubündenMain ingredientsDried meat (beef)Ingredients generally usedonion, herbs, white wine  Media: Bündnerfleisch Bündnerfleisch, also known as Bindenfleisch, Grisons Meat or Viande des Grisons, is an air-dried meat that is produced in the canton of Graubünden, Switzerland. Production The main ingredient is beef, taken from the animal…

Nama ini menggunakan kebiasaan penamaan Filipina; nama tengah atau nama keluarga pihak ibunya adalah Santiago dan marga atau nama keluarga pihak ayahnya adalah Valenciano. Gary ValencianoGary Valenciano menyanyi di Toronto 2014LahirEdgardo Jose Santiago Valenciano6 Agustus 1964 (umur 59) Santa Mesa, Manila, Filipina[1]Nama lainGary V., Mr. Pure EnergyPekerjaanPenyanyi, penulis lagu, produser rekaman, aktor, penariSuami/istriAngeli Pangilinan (1984 - sekarang)AnakPaolo Vale…

Questa voce o sezione sugli argomenti battaglie e seconda guerra mondiale non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti dei progetti di riferimento 1, 2. Liberazione di Praga[1]parte della seconda guerra mondialeMappa dell'offensiva di PragaData5 - 12 maggio 1945 LuogoPraga EsitoDecisiva vittoria sovietica Schieramenti Ger…

2009 single by Toni BraxtonYesterdaySingle by Toni Braxtonfrom the album Pulse ReleasedSeptember 29, 2009Length3:48LabelAtlanticSongwriter(s)Jerome ArmstrongTerrence BattleToni BraxtonJustin FranksMichael WhiteProducer(s)DJ Frank EToni Braxton singles chronology The Time of Our Lives (2006) Yesterday (2009) Hands Tied (2010) Yesterday is a song by American R&B singer Toni Braxton. It was written by Braxton, Jerome Armstrong, Terrence Battle, Michael White, and DJ Frank E and produced by …

1939 film by W. S. Van Dyke Stand Up and FightTheatrical Film PosterDirected byW.S. Van DykeWritten byJames M. Cain, Jane Murfin, Harvey Fergusson, Laurence StallingsProduced byMervyn LeRoyStarringWallace BeeryRobert TaylorCinematographyLeonard SmithEdited byFrank SullivanMusic byWilliam AxtDistributed byMetro-Goldwyn-MayerRelease date January 6, 1939 (1939-01-06) Running time97 minutesCountryUnited StatesLanguageEnglishBudget$1,055,000[1]Box office$1,840,000[1] St…

Rhyticeros Rhyticeros plicatus Klasifikasi ilmiah Domain: Eukaryota Kerajaan: Animalia Filum: Chordata Kelas: Aves Ordo: Bucerotiformes Famili: Bucerotidae Genus: RhyticerosReichenbach, 1849 Spesies tipe Buceros plicatus[1]Latham, 1790 Spesies Rhyticeros plicatus Rhyticeros narcondami Rhyticeros subruficollis Rhyticeros undulatus Rhyticeros everetti Rhyticeros cassidix Rhyticeros adalah genus dari rangkong (Bucerotidae) ukuran menengah sampai besar yang ditemukan di hutan dari Asia Tengg…

追晉陸軍二級上將趙家驤將軍个人资料出生1910年 大清河南省衛輝府汲縣逝世1958年8月23日(1958歲—08—23)(47—48歲) † 中華民國福建省金門縣国籍 中華民國政党 中國國民黨获奖 青天白日勳章(追贈)军事背景效忠 中華民國服役 國民革命軍 中華民國陸軍服役时间1924年-1958年军衔 二級上將 (追晉)部队四十七師指挥東北剿匪總司令部參謀長陸軍總…

Grocery store chain in Ohio, US This article is about the Northeast Ohio grocery chain. For the unrelated Philadelphia-area chain, see Acme Markets. The Fred W. Albrecht Grocery CompanyTrade nameAcme Fresh MarketCompany typePrivateIndustryRetail (Grocery)Founded1891; 133 years ago (1891)FounderFrederick Wilhelm AlbrechtHeadquartersAkron, Ohio, U.S.Number of locations16Area servedNortheast OhioKey peopleJim Trout (President)Nick Albrecht (Executive Vice President)ProductsGrocery…

Cet article est une ébauche concernant le climat. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Climat subtropical humide. Ville de Sotchi, en Russie, avec sa végétation urbaine typique du climat subtropical humide Le climat subtropical humide, selon la classification de Köppen (Cfa et Cwa), est une zone climatique tempérée caractérisée par des étés chauds (température moyenne du mois le plus chaud sup…

Fascicolo neroTitolo originaleLe dossier noir Paese di produzioneFrancia, Italia Anno1955 Durata115 min Dati tecniciB/Nrapporto: 1,37:1 Generedrammatico RegiaAndré Cayatte SoggettoAndré Cayatte e Charles Spaak ProduttoreAngelo Rizzoli, Michel Safra Casa di produzioneSpéva Films, Rizzoli Film MontaggioPaul Cayatte MusicheLouiguy ScenografiaJean Bourgoin CostumiRosine Delamare Interpreti e personaggi Jean-Marc Bory: Jacques Arnaud Henri Crémieux: procuratore Limousin Noël Roquevert: commi…

هذه المقالة عن المجموعة العرقية الأتراك وليس عن من يحملون جنسية الجمهورية التركية أتراكTürkler (بالتركية) التعداد الكليالتعداد 70~83 مليون نسمةمناطق الوجود المميزةالبلد  القائمة ... تركياألمانياسورياالعراقبلغارياالولايات المتحدةفرنساالمملكة المتحدةهولنداالنمساأسترالياب…

  提示:此条目页的主题不是中國—瑞士關係。   關於中華民國與「瑞」字國家的外交關係,詳見中瑞關係 (消歧義)。 中華民國—瑞士關係 中華民國 瑞士 代表機構駐瑞士台北文化經濟代表團瑞士商務辦事處代表代表 黃偉峰 大使[註 1][4]處長 陶方婭[5]Mrs. Claudia Fontana Tobiassen 中華民國—瑞士關係(德語:Schweizerische–republik china Beziehungen、法語:…

American physicist Mike GruntmanGruntman in 2019Born1954 (1954) (age 70)Soviet UnionNationalityAmericanEducationMoscow Institute of Physics and TechnologyRussian Space Research InstituteWebsiteAstronauticsnow Mike Gruntman is a Russian-American physicist, space engineer, and author. He is professor of astronautics and aerospace engineering at the Viterbi School of Engineering, University of Southern California (USC).[1] Biography Born in the USSR, Gruntman grew up as a child at…

Utada Hikaru Japanese-American singer-songwriter Utada Hikaru has recorded both Japanese and English songs for a total of 8 studio albums (5 Japanese, 3 English), 3 compilation albums and guest features in both other artist's singles and albums. List of recorded songs Key † Indicates single release # Indicates promotional single release Song Artist(s) Writer(s) Album(s) Year Language(s) Ref. 100 Reasons Why Utada Hikaru Utada Hikaru Charlene Harrison Precious 1998 English A.S.A.P. Utada Hikaru…

Prof. Dr.Thomas Djamaluddin M.Sc.Thomas Djamaluddin pada tahun 2016 Kepala Lembaga Penerbangan dan Antariksa NasionalMasa jabatan7 Februari 2014 – 1 September 2021PresidenSusilo Bambang Yudhoyono Joko WidodoPendahuluBambang S. TejasukmanaPenggantiPetahana Informasi pribadiLahir23 Januari 1962 (umur 62) Purwokerto, IndonesiaKebangsaan IndonesiaSuami/istriErni Riz SusilawatiAnakVega Isma ZakiahGingga Ismu Muttaqin HadikoVenus Hikaru AisyahAlma materInstitut Teknologi Bandung K…

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مايو 2020) جائحة فيروس كورونا في سراوق المكان سراوق  الوفيات 3   الحالات المؤكدة 63   تعديل مصدري - تعديل   تم تأك…

Kembali kehalaman sebelumnya