^Ōmura, Satoshi; Shiomi, Kazuro (2007). “Discovery, chemistry, and chemical biology of microbial products”. Pure and Applied Chemistry79 (4). doi:10.1351/pac200779040581.
^ abPitterna, Thomas; Cassayre, Jérôme; Hüter, Ottmar Franz; Jung, Pierre M.J.; Maienfisch, Peter; Kessabi, Fiona Murphy; Quaranta, Laura; Tobler, Hans (2009). “New ventures in the chemistry of avermectins”. Bioorganic & Medicinal Chemistry17 (12): 4085. doi:10.1016/j.bmc.2008.12.069.
^Burg, R. W.; Miller, B. M.; Baker, E. E.; Birnbaum, J.; Currie, S. A.; Hartman, R.; Kong, Y.-L.; Monaghan, R. L. et al. (1979). “Avermectins, New Family of Potent Anthelmintic Agents: Producing Organism and Fermentation”. Antimicrobial Agents and Chemotherapy15 (3): 361. doi:10.1128/AAC.15.3.361. PMID464561.
^Takahashi, Y. (2002). “Streptomyces avermectinius sp. nov., an avermectin-producing strain”. International Journal of Systematic and Evolutionary Microbiology52 (6): 2163. doi:10.1099/ijs.0.02237-0. PMID12508884.
^Hotson, I. K. (1982). “The avermectins: A new family of antiparasitic agents”. Journal of the South African Veterinary Association53 (2): 87–90. PMID6750121.
^Cully, Doris F.; Vassilatis, Demetrios K.; Liu, Ken K.; Paress, Philip S.; Van Der Ploeg, Lex H. T.; Schaeffer, James M.; Arena, Joseph P. (1994). “Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans”. Nature371 (6499): 707. Bibcode: 1994Natur.371..707C. doi:10.1038/371707a0. PMID7935817.
^Bloomquist, Jeffrey R. (2003). “Chloride channels as tools for developing selective insecticides”. Archives of Insect Biochemistry and Physiology54 (4): 145–56. doi:10.1002/arch.10112. PMID14635176.
^Bloomquist, Jeffrey R. (1993). “Toxicology, mode of action and target site-mediated resistance to insecticides acting on chloride channels”. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology106 (2): 301. doi:10.1016/0742-8413(93)90138-b.
^Clark, J K; Scott, J G; Campos, F; Bloomquist, J R (1995). “Resistance to Avermectins: Extent, Mechanisms, and Management Implications”. Annual Review of Entomology40: 1–30. doi:10.1146/annurev.en.40.010195.000245. PMID7810984.
^Toth, L. A.; Oberbeck, C; Straign, C. M.; Frazier, S; Rehg, J. E. (2000). “Toxicity evaluation of prophylactic treatments for mites and pinworms in mice”. Contemporary topics in laboratory animal science / American Association for Laboratory Animal Science39 (2): 18–21. PMID11487234.
^Viktorov, A. V.; Yurkiv, V. A. (2003). “Effect of ivermectin on function of liver macrophages”. Bulletin of experimental biology and medicine136 (6): 569–71. PMID15500074.
^Yang, Chen-Chang (2012). “Acute Human Toxicity of Macrocyclic Lactones”. Current Pharmaceutical Biotechnology13 (6): 999–1003. doi:10.2174/138920112800399059. PMID22039794.
^ abIkeda, H.; Nonomiya, T.; Usami, M.; Ohta, T.; Omura, S. (1999). “Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis”. Proceedings of the National Academy of Sciences96 (17): 9509. Bibcode: 1999PNAS...96.9509I. doi:10.1073/pnas.96.17.9509.
^ abcdefghijYoon, Y. J.; Kim, E.-S.; Hwang, Y.-S.; Choi, C.-Y. (2004). “Avermectin: Biochemical and molecular basis of its biosynthesis and regulation”. Applied Microbiology and Biotechnology63 (6): 626. doi:10.1007/s00253-003-1491-4. PMID14689246.
^Zhang, Changsheng; Albermann, Christoph; Fu, Xun; Thorson, Jon S. (2006). “The in Vitro Characterization of the Iterative Avermectin Glycosyltransferase AveBI Reveals Reaction Reversibility and Sugar Nucleotide Flexibility”. Journal of the American Chemical Society128 (51): 16420. doi:10.1021/ja065950k. PMID17177349.